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Using Classes and Objects 

• We can create more interesting programs using predefined 

classes and related objects 

• Chapter 3 focuses on: 

– object creation and object references 

– the String class and its methods 

– the Java API class library 

– the Random and Math classes 

– formatting output 

– enumerated types 

– wrapper classes 

– graphical components and containers 

– labels and images 

Copyright © 2014 Pearson Education, Inc. 



Outline 

Creating Objects 

The String Class 

The Random and Math Classes 

Formatting Output 

Enumerated Types 

Wrapper Classes 

Components and Containers 

Images 

Copyright © 2014 Pearson Education, Inc. 



Creating Objects 

• A variable holds either a primitive value or a 
reference to an object 

• A class name can be used as a type to declare an 
object reference variable 

String title; 

• No object is created with this declaration 

• An object reference variable holds the address of 
an object 

• The object itself must be created separately 
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Creating Objects 

• Generally, we use the new operator to create an 
object 

• Creating an object is called instantiation 

• An object is an instance of a particular class 

title = new String("Java Software Solutions"); 

This calls the String constructor, which is 

a special method that sets up the object 
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Invoking Methods 

• We've seen that once an object has been 
instantiated, we can use the dot operator to invoke 
its methods 

numChars = title.length() 

• A method may return a value, which can be used in 
an assignment or expression 

• A method invocation can be thought of as asking an 
object to perform a service 
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References 

• Note that a primitive variable contains the value 
itself, but an object variable contains the address of 
the object 

• An object reference can be thought of as a pointer 
to the location of the object 

• Rather than dealing with arbitrary addresses, we 
often depict a reference graphically 

"Steve Jobs" name1 

num1 38 
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Assignment Revisited 

• The act of assignment takes a copy of a value and 
stores it in a variable 

• For primitive types: 

num1 38 

num2 96 
Before: 

num2 = num1; 

num1 38 

num2 38 
After: 
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Reference Assignment 

• For object references, assignment copies the 

address: 

name2 = name1; 

name1 

name2 
Before: 

"Steve Jobs" 

"Steve Wozniak" 

name1 

name2 
After: 

"Steve Jobs" 
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Aliases 

• Two or more references that refer to the same 
object are called aliases of each other 

• That creates an interesting situation: one object 
can be accessed using multiple reference variables 

• Aliases can be useful, but should be managed 
carefully 

• Changing an object through one reference 
changes it for all of its aliases, because there is 
really only one object 
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Garbage Collection 

• When an object no longer has any valid references 
to it, it can no longer be accessed by the program 

• The object is useless, and therefore is called 
garbage 

• Java performs automatic garbage collection 
periodically, returning an object's memory to the 
system for future use 

• In other languages, the programmer is responsible 
for performing garbage collection 
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The String Class 

• Because strings are so common, we don't have to 
use the new operator to create a String object 

title = "Java Software Solutions"; 

• This is special syntax that works only for strings 

• Each string literal (enclosed in double quotes) 
represents a String object 
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String Methods 

• Once a String object has been created, neither 
its value nor its length can be changed 

• Therefore we say that an object of the String 
class is immutable 

• However, several methods of the String class 
return new String objects that are modified 
versions of the original 
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String Indexes 

• It is occasionally helpful to refer to a particular 
character within a string 

• This can be done by specifying the character's 
numeric index 

• The indexes begin at zero in each string 

• In the string "Hello", the character 'H' is at 
index 0 and the 'o' is at index 4 

• See StringMutation.java  
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//******************************************************************** 

//  StringMutation.java       Author: Lewis/Loftus 

// 

//  Demonstrates the use of the String class and its methods. 

//******************************************************************** 

 

public class StringMutation 

{ 

   //----------------------------------------------------------------- 

   //  Prints a string and various mutations of it. 

   //----------------------------------------------------------------- 

   public static void main(String[] args) 

   { 

      String phrase = "Change is inevitable"; 

      String mutation1, mutation2, mutation3, mutation4; 

 

      System.out.println("Original string: \"" + phrase + "\""); 

      System.out.println("Length of string: " + phrase.length()); 

 

      mutation1 = phrase.concat(", except from vending machines."); 

      mutation2 = mutation1.toUpperCase(); 

      mutation3 = mutation2.replace('E', 'X'); 

      mutation4 = mutation3.substring(3, 30); 

 

continued 



Copyright © 2014 Pearson Education, Inc. 

continued 
 

      // Print each mutated string 

      System.out.println("Mutation #1: " + mutation1); 

      System.out.println("Mutation #2: " + mutation2); 

      System.out.println("Mutation #3: " + mutation3); 

      System.out.println("Mutation #4: " + mutation4); 

 

      System.out.println("Mutated length: " + mutation4.length()); 

   } 

} 
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continued 
 

      // Print each mutated string 

      System.out.println ("Mutation #1: " + mutation1); 

      System.out.println ("Mutation #2: " + mutation2); 

      System.out.println ("Mutation #3: " + mutation3); 

      System.out.println ("Mutation #4: " + mutation4); 

 

      System.out.println("Mutated length: " + mutation4.length()); 

   } 

} 

Output 

Original string: "Change is inevitable" 

Length of string: 20 

Mutation #1: Change is inevitable, except from vending machines. 

Mutation #2: CHANGE IS INEVITABLE, EXCEPT FROM VENDING MACHINES. 

Mutation #3: CHANGX IS INXVITABLX, XXCXPT FROM VXNDING MACHINXS. 

Mutation #4: NGX IS INXVITABLX, XXCXPT F 

Mutated length: 27 



Quick Check 
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What output is produced by the following? 

 
String str = "Space, the final frontier."; 

System.out.println(str.length()); 

System.out.println(str.substring(7)); 

System.out.println(str.toUpperCase()); 

System.out.println(str.length()); 

 



Quick Check 
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What output is produced by the following? 

 
String str = "Space, the final frontier."; 

System.out.println(str.length()); 

System.out.println(str.substring(7)); 

System.out.println(str.toUpperCase()); 

System.out.println(str.length()); 

 

26 

the final frontier. 

SPACE, THE FINAL FRONTIER. 

26 
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Class Libraries 

• A class library is a collection of classes that we can 

use when developing programs 

• The Java standard class library is part of any Java 

development environment 

• Its classes are not part of the Java language per se, 

but we rely on them heavily 

• Various classes we've already used (System , 

Scanner, String) are part of the Java standard 

class library 
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The Java API 

• The Java class library is sometimes referred to as 

the Java API 

• API stands for Application Programming Interface 

• Clusters of related classes are sometimes referred 

to as specific APIs: 

– The Swing API 

– The Database API 
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The Java API 
• Get comfortable navigating the online Java API 

documentation 
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Packages 

• For purposes of accessing them, classes in the 
Java API are organized into packages 

• These often overlap with specific APIs 

• Examples: 

Package 

java.lang 

java.applet 

java.awt 

javax.swing 

java.net 

java.util 

javax.xml.parsers 

Purpose 

General support 

Creating applets for the web 

Graphics and graphical user interfaces 

Additional graphics capabilities 

Network communication 

Utilities 

XML document processing 
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The import Declaration 

• When you want to use a class from a package, you 
could use its fully qualified name 

java.util.Scanner 

• Or you can import the class, and then use just the 
class name 

import java.util.Scanner; 

• To import all classes in a particular package, you 
can use the * wildcard character 

import java.util.*; 
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The import Declaration 

• All classes of the java.lang package are 
imported automatically into all programs 

• It's as if all programs contain the following line: 

import java.lang.*; 

• That's why we didn't have to import the System or 
String classes explicitly in earlier programs 

• The Scanner class, on the other hand, is part of 
the java.util package, and therefore must be 
imported 
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The Random Class 

• The Random class is part of the java.util 
package 

• It provides methods that generate pseudorandom 
numbers 

• A Random object performs complicated calculations 
based on a seed value to produce a stream of 
seemingly random values 

• See RandomNumbers.java  
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//******************************************************************** 

//  RandomNumbers.java       Author: Lewis/Loftus 

// 

//  Demonstrates the creation of pseudo-random numbers using the 

//  Random class. 

//******************************************************************** 

 

import java.util.Random; 

 

public class RandomNumbers 

{ 

   //----------------------------------------------------------------- 

   //  Generates random numbers in various ranges. 

   //----------------------------------------------------------------- 

   public static void main(String[] args) 

   { 

      Random generator = new Random(); 

      int num1; 

      float num2; 

 

      num1 = generator.nextInt(); 

      System.out.println("A random integer: " + num1); 

 

      num1 = generator.nextInt(10); 

      System.out.println("From 0 to 9: " + num1); 

 

continued 



Copyright © 2014 Pearson Education, Inc. 

continued 
 

      num1 = generator.nextInt(10) + 1; 

      System.out.println("From 1 to 10: " + num1); 

 

      num1 = generator.nextInt(15) + 20; 

      System.out.println("From 20 to 34: " + num1); 

 

      num1 = generator.nextInt(20) - 10; 

      System.out.println("From -10 to 9: " + num1); 

 

      num2 = generator.nextFloat(); 

      System.out.println("A random float (between 0-1): " + num2); 

 

      num2 = generator.nextFloat() * 6;  // 0.0 to 5.999999 

      num1 = (int)num2 + 1; 

      System.out.println("From 1 to 6: " + num1); 

   } 

} 
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continued 
 

      num1 = generator.nextInt(10) + 1; 

      System.out.println ("From 1 to 10: " + num1); 

 

      num1 = generator.nextInt(15) + 20; 

      System.out.println ("From 20 to 34: " + num1); 

 

      num1 = generator.nextInt(20) - 10; 

      System.out.println ("From -10 to 9: " + num1); 

 

      num2 = generator.nextFloat(); 

      System.out.println("A random float (between 0-1): " + num2); 

 

      num2 = generator.nextFloat() * 6;  // 0.0 to 5.999999 

      num1 = (int)num2 + 1; 

      System.out.println("From 1 to 6: " + num1); 

   } 

} 

Sample Run 

A random integer: 672981683 

From 0 to 9: 0 

From 1 to 10: 3 

From 20 to 34: 30 

From -10 to 9: -4 

A random float (between 0-1): 0.18538326 

From 1 to 6: 3 



Quick Check 
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Given a Random object named gen, what range of 

values are produced by the following expressions? 

 

gen.nextInt(25) 

gen.nextInt(6) + 1 

gen.nextInt(100) + 10 

gen.nextInt(50) + 100 

gen.nextInt(10) – 5 

gen.nextInt(22) + 12 



Quick Check 

Copyright © 2014 Pearson Education, Inc. 

Given a Random object named gen, what range of 

values are produced by the following expressions? 

 

gen.nextInt(25) 

gen.nextInt(6) + 1 

gen.nextInt(100) + 10 

gen.nextInt(50) + 100 

gen.nextInt(10) – 5 

gen.nextInt(22) + 12 

Range 

0 to 24 

1 to 6 

10 to 109 

100 to 149 

-5 to 4 

12 to 33 



Quick Check 
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Write an expression that produces a random integer 

in the following ranges: 

 
Range 

0 to 12 

1 to 20 

15 to 20 

-10 to 0 



Quick Check 
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Write an expression that produces a random integer 

in the following ranges: 

 

gen.nextInt(13) 

gen.nextInt(20) + 1 

gen.nextInt(6) + 15 

gen.nextInt(11) – 10 

Range 

0 to 12 

1 to 20 

15 to 20 

-10 to 0 



The Math Class 

• The Math class is part of the java.lang package 

• The Math class contains methods that perform 
various mathematical functions 

• These include: 

– absolute value 

– square root 

– exponentiation 

– trigonometric functions 
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The Math Class 

• The methods of the Math class are static methods 
(also called class methods) 

• Static methods are invoked through the class name 
– no object of the Math class is needed 

value = Math.cos(90) + Math.sqrt(delta); 

• We discuss static methods further in Chapter 7 

• See Quadratic.java  
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//******************************************************************** 

//  Quadratic.java       Author: Lewis/Loftus 

// 

//  Demonstrates the use of the Math class to perform a calculation 

//  based on user input. 

//******************************************************************** 

 

import java.util.Scanner; 

 

public class Quadratic 

{ 

   //----------------------------------------------------------------- 

   //  Determines the roots of a quadratic equation. 

   //----------------------------------------------------------------- 

   public static void main(String[] args) 

   { 

      int a, b, c;  // ax^2 + bx + c 

      double discriminant, root1, root2; 

 

      Scanner scan = new Scanner(System.in); 

 

      System.out.print("Enter the coefficient of x squared: "); 

      a = scan.nextInt(); 

 

continued 
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 continued 
 

      System.out.print("Enter the coefficient of x: "); 

      b = scan.nextInt(); 

 

      System.out.print("Enter the constant: "); 

      c = scan.nextInt(); 

 

      // Use the quadratic formula to compute the roots. 

      // Assumes a positive discriminant. 

 

      discriminant = Math.pow(b, 2) - (4 * a * c); 

      root1 = ((-1 * b) + Math.sqrt(discriminant)) / (2 * a); 

      root2 = ((-1 * b) - Math.sqrt(discriminant)) / (2 * a); 

 

      System.out.println("Root #1: " + root1); 

      System.out.println("Root #2: " + root2); 

   } 

} 
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 continued 
 

      System.out.print ("Enter the coefficient of x: "); 

      b = scan.nextInt(); 

 

      System.out.print ("Enter the constant: "); 

      c = scan.nextInt(); 

 

      // Use the quadratic formula to compute the roots. 

      // Assumes a positive discriminant. 

 

      discriminant = Math.pow(b, 2) - (4 * a * c); 

      root1 = ((-1 * b) + Math.sqrt(discriminant)) / (2 * a); 

      root2 = ((-1 * b) - Math.sqrt(discriminant)) / (2 * a); 

 

      System.out.println("Root #1: " + root1); 

      System.out.println("Root #2: " + root2); 

   } 

} 

Sample Run 

Enter the coefficient of x squared: 3 

Enter the coefficient of x: 8 

Enter the constant: 4 

Root #1: -0.6666666666666666 

Root #2: -2.0 
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Formatting Output 

• It is often necessary to format output values in 
certain ways so that they can be presented properly 

• The Java standard class library contains classes 
that provide formatting capabilities 

• The NumberFormat class allows you to format 
values as currency or percentages 

• The DecimalFormat class allows you to format 
values based on a pattern 

• Both are part of the java.text package 
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Formatting Output 

• The NumberFormat class has static methods that 

return a formatter object 

getCurrencyInstance() 

getPercentInstance() 

• Each formatter object has a method called 
format that returns a string with the specified 

information in the appropriate format 

• See Purchase.java  
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//******************************************************************** 

//  Purchase.java       Author: Lewis/Loftus 

// 

//  Demonstrates the use of the NumberFormat class to format output. 

//******************************************************************** 

 

import java.util.Scanner; 

import java.text.NumberFormat; 

 

public class Purchase 

{ 

   //----------------------------------------------------------------- 

   //  Calculates the final price of a purchased item using values 

   //  entered by the user. 

   //----------------------------------------------------------------- 

   public static void main(String[] args) 

   { 

      final double TAX_RATE = 0.06;  // 6% sales tax 

 

      int quantity; 

      double subtotal, tax, totalCost, unitPrice; 

 

      Scanner scan = new Scanner(System.in); 

 

continued 
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continued 
 

      NumberFormat fmt1 = NumberFormat.getCurrencyInstance(); 

      NumberFormat fmt2 = NumberFormat.getPercentInstance(); 

 

      System.out.print("Enter the quantity: "); 

      quantity = scan.nextInt(); 

 

      System.out.print("Enter the unit price: "); 

      unitPrice = scan.nextDouble(); 

 

      subtotal = quantity * unitPrice; 

      tax = subtotal * TAX_RATE; 

      totalCost = subtotal + tax; 

 

      // Print output with appropriate formatting 

      System.out.println("Subtotal: " + fmt1.format(subtotal)); 

      System.out.println("Tax: " + fmt1.format(tax) + " at " 

                          + fmt2.format(TAX_RATE)); 

      System.out.println("Total: " + fmt1.format(totalCost)); 

   } 

} 
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continued 
 

      NumberFormat fmt1 = NumberFormat.getCurrencyInstance(); 

      NumberFormat fmt2 = NumberFormat.getPercentInstance(); 

 

      System.out.print ("Enter the quantity: "); 

      quantity = scan.nextInt(); 

 

      System.out.print("Enter the unit price: "); 

      unitPrice = scan.nextDouble(); 

 

      subtotal = quantity * unitPrice; 

      tax = subtotal * TAX_RATE; 

      totalCost = subtotal + tax; 

 

      // Print output with appropriate formatting 

      System.out.println("Subtotal: " + fmt1.format(subtotal)); 

      System.out.println("Tax: " + fmt1.format(tax) + " at " 

                          + fmt2.format(TAX_RATE)); 

      System.out.println("Total: " + fmt1.format(totalCost)); 

   } 

} 

Sample Run 

Enter the quantity: 5 

Enter the unit price: 3.87 

Subtotal: $19.35 

Tax: $1.16 at 6% 

Total: $20.51 



Formatting Output 

• The DecimalFormat class can be used to format 
a floating point value in various ways 

• For example, you can specify that the number 
should be truncated to three decimal places 

• The constructor of the DecimalFormat class 
takes a string that represents a pattern for the 
formatted number 

• See CircleStats.java  
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//******************************************************************** 

//  CircleStats.java       Author: Lewis/Loftus 

// 

//  Demonstrates the formatting of decimal values using the 

//  DecimalFormat class. 

//******************************************************************** 

 

import java.util.Scanner; 

import java.text.DecimalFormat; 

 

public class CircleStats 

{ 

   //----------------------------------------------------------------- 

   //  Calculates the area and circumference of a circle given its 

   //  radius. 

   //----------------------------------------------------------------- 

   public static void main(String[] args) 

   { 

      int radius; 

      double area, circumference; 

 

      Scanner scan = new Scanner(System.in); 

 

continued 
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continued 
 

      System.out.print ("Enter the circle's radius: "); 

      radius = scan.nextInt(); 

 

      area = Math.PI * Math.pow(radius, 2); 

      circumference = 2 * Math.PI * radius; 

 

      // Round the output to three decimal places 

      DecimalFormat fmt = new DecimalFormat ("0.###"); 

 

      System.out.println ("The circle's area: " + fmt.format(area)); 

      System.out.println ("The circle's circumference: " 

                          + fmt.format(circumference)); 

   } 

} 
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continued 
 

      System.out.print ("Enter the circle's radius: "); 

      radius = scan.nextInt(); 

 

      area = Math.PI * Math.pow(radius, 2); 

      circumference = 2 * Math.PI * radius; 

 

      // Round the output to three decimal places 

      DecimalFormat fmt = new DecimalFormat("0.###"); 

 

      System.out.println("The circle's area: " + fmt.format(area)); 

      System.out.println("The circle's circumference: " 

                          + fmt.format(circumference)); 

   } 

} 

Sample Run 

Enter the circle's radius: 5 

The circle's area: 78.54 

The circle's circumference: 31.416 
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Enumerated Types 

• Java allows you to define an enumerated type, 
which can then be used to declare variables 

• An enumerated type declaration lists all possible 
values for a variable of that type 

• The values are identifiers of your own choosing 

• The following declaration creates an enumerated 
type called Season 

 enum Season {winter, spring, summer, fall}; 

• Any number of values can be listed 
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Enumerated Types 

• Once a type is defined, a variable of that type can 
be declared: 

Season time; 

• And it can be assigned a value: 

time = Season.fall; 

• The values are referenced through the name of the 
type 

• Enumerated types are type-safe – you cannot 
assign any value other than those listed 
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Ordinal Values 

• Internally, each value of an enumerated type is 

stored as an integer, called its ordinal value 

• The first value in an enumerated type has an 

ordinal value of zero, the second one, and so on 

• However, you cannot assign a numeric value to an 

enumerated type, even if it corresponds to a valid 

ordinal value 
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Enumerated Types 

• The declaration of an enumerated type is a special 
type of class, and each variable of that type is an 
object 

• The ordinal method returns the ordinal value of 
the object 

• The name method returns the name of the identifier 
corresponding to the object's value 

• See IceCream.java  
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//******************************************************************** 

//  IceCream.java       Author: Lewis/Loftus 

// 

//  Demonstrates the use of enumerated types. 

//******************************************************************** 

 

public class IceCream 

{ 

   enum Flavor {vanilla, chocolate, strawberry, fudgeRipple, coffee, 

                rockyRoad, mintChocolateChip, cookieDough} 

 

   //----------------------------------------------------------------- 

   //  Creates and uses variables of the Flavor type. 

   //----------------------------------------------------------------- 

   public static void main (String[] args) 

   { 

      Flavor cone1, cone2, cone3; 

 

      cone1 = Flavor.rockyRoad; 

      cone2 = Flavor.chocolate; 

 

      System.out.println("cone1 value: " + cone1); 

      System.out.println("cone1 ordinal: " + cone1.ordinal()); 

      System.out.println("cone1 name: " + cone1.name()); 

 

continued 
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continued 
 

      System.out.println(); 

      System.out.println("cone2 value: " + cone2); 

      System.out.println("cone2 ordinal: " + cone2.ordinal()); 

      System.out.println("cone2 name: " + cone2.name()); 

 

      cone3 = cone1; 

 

      System.out.println(); 

      System.out.println("cone3 value: " + cone3); 

      System.out.println("cone3 ordinal: " + cone3.ordinal()); 

      System.out.println("cone3 name: " + cone3.name()); 

   } 

} 
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continued 
 

      System.out.println (); 

      System.out.println ("cone2 value: " + cone2); 

      System.out.println ("cone2 ordinal: " + cone2.ordinal()); 

      System.out.println ("cone2 name: " + cone2.name()); 

 

      cone3 = cone1; 

 

      System.out.println (); 

      System.out.println ("cone3 value: " + cone3); 

      System.out.println ("cone3 ordinal: " + cone3.ordinal()); 

      System.out.println("cone3 name: " + cone3.name()); 

   } 

} 

Output 

cone1 value: rockyRoad 

cone1 ordinal: 5 

cone1 name: rockyRoad 

cone2 value: chocolate 

cone2 ordinal: 1 

cone2 name: chocolate 

cone3 value: rockyRoad 

cone3 ordinal: 5 

cone3 name: rockyRoad 
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Wrapper Classes 
• The java.lang package contains wrapper 

classes that correspond to each primitive type: 

Primitive Type Wrapper Class 

byte Byte 

short Short 

int Integer 

long Long 

float Float 

double Double 

char Character 

boolean Boolean 



Wrapper Classes 
• The following declaration creates an Integer 

object which represents the integer 40 as an object  

 Integer age = new Integer(40); 

• An object of a wrapper class can be used in any 
situation where a primitive value will not suffice 

• For example, some objects serve as containers of 
other objects 

• Primitive values could not be stored in such 
containers, but wrapper objects could be 

Copyright © 2014 Pearson Education, Inc. 



Wrapper Classes 

• Wrapper classes also contain static methods that 
help manage the associated type 

• For example, the Integer class contains a 
method to convert an integer stored in a String 
to an int value: 

num = Integer.parseInt(str); 

• They often contain useful constants as well 

• For example, the Integer class contains 
MIN_VALUE and MAX_VALUE which hold the 
smallest and largest int values 
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Autoboxing 

• Autoboxing is the automatic conversion of a 
primitive value to a corresponding wrapper object: 

   Integer obj; 

   int num = 42; 

   obj = num; 

• The assignment creates the appropriate Integer 
object 

• The reverse conversion (called unboxing) also 
occurs automatically as needed 
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Quick Check 
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Are the following assignments valid? Explain. 

 
Double value = 15.75; 

 

 

Character ch = new Character('T'); 

char myChar = ch; 



Quick Check 
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Are the following assignments valid? Explain. 

 
Double value = 15.75; 

 

 

Character ch = new Character('T'); 

char myChar = ch; 

Yes. The double literal is autoboxed into a Double object. 

 

 

 

Yes, the char in the object is unboxed before the assignment. 
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Graphical Applications 

• Except for the applets seen in Chapter 2, the 
example programs we've explored thus far have 
been text-based 

• They are called command-line applications, which 
interact with the user using simple text prompts 

• Let's examine some Java applications that have 
graphical components 

• These components will serve as a foundation to 
programs that have true graphical user interfaces 
(GUIs) 
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GUI Components 
• A GUI component is an object that represents a 

screen element such as a button or a text field 

• GUI-related classes are defined primarily in the 
java.awt and the javax.swing packages 

• The Abstract Windowing Toolkit (AWT) was the 
original Java GUI package 

• The Swing package provides additional and more 
versatile components 

• Both packages are needed to create a Java GUI-
based program 
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GUI Containers 
• A GUI container is a component that is used to hold 

and organize other components 

• A frame is a container displayed as a separate 
window with a title bar 

• It can be repositioned and resized on the screen as 
needed 

• A panel is a container that cannot be displayed on 
its own but is used to organize other components 

• A panel must be added to another container (like a 
frame or another panel) to be displayed 
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GUI Containers 

• A GUI container can be classified as either 
heavyweight or lightweight 

• A heavyweight container is one that is managed by 
the underlying operating system 

• A lightweight container is managed by the Java 
program itself 

• Occasionally this distinction is important 

• A frame is a heavyweight container and a panel is a 
lightweight container 
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Labels 

• A label is a GUI component that displays a line of 
text and/or an image 

• Labels are usually used to display information or 
identify other components in the interface 

• Let's look at a program that organizes two labels in 
a panel and displays that panel in a frame 

• This program is not interactive, but the frame can 
be repositioned and resized 

• See Authority.java 
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//******************************************************************** 

//  Authority.java       Author: Lewis/Loftus 

// 

//  Demonstrates the use of frames, panels, and labels. 

//******************************************************************** 

 

import java.awt.*; 

import javax.swing.*; 

 

public class Authority 

{ 

   //----------------------------------------------------------------- 

   //  Displays some words of wisdom. 

   //----------------------------------------------------------------- 

   public static void main(String[] args) 

   { 

      JFrame frame = new JFrame("Authority"); 

 

      frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

 

      JPanel primary = new JPanel(); 

      primary.setBackground(Color.yellow); 

      primary.setPreferredSize(new Dimension(250, 75)); 

 

continued 
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continued 
 

      JLabel label1 = new JLabel("Question authority,"); 

      JLabel label2 = new JLabel("but raise your hand first."); 

 

      primary.add(label1); 

      primary.add(label2); 

 

      frame.getContentPane().add(primary); 

      frame.pack(); 

      frame.setVisible(true); 

   } 

} 
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continued 
 

      JLabel label1 = new JLabel ("Question authority,"); 

      JLabel label2 = new JLabel ("but raise your hand first."); 

 

      primary.add (label1); 

      primary.add(label2); 

 

      frame.getContentPane().add(primary); 

      frame.pack(); 

      frame.setVisible(true); 

   } 

} 

 

 

 

 

 

 



Nested Panels 

• Containers that contain other components make up 

the containment hierarchy of an interface 

• This hierarchy can be as intricate as needed to 

create the visual effect desired 

• The following example nests two panels inside a 

third panel – note the effect this has as the frame is 

resized 

• See NestedPanels.java  
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//******************************************************************** 

//  NestedPanels.java       Author: Lewis/Loftus 

// 

//  Demonstrates a basic componenet hierarchy. 

//******************************************************************** 

 

import java.awt.*; 

import javax.swing.*; 

 

public class NestedPanels 

{ 

   //----------------------------------------------------------------- 

   //  Presents two colored panels nested within a third. 

   //----------------------------------------------------------------- 

   public static void main(String[] args) 

   { 

      JFrame frame = new JFrame("Nested Panels"); 

      frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

 

      // Set up first subpanel 

      JPanel subPanel1 = new JPanel(); 

      subPanel1.setPreferredSize(new Dimension(150, 100)); 

      subPanel1.setBackground(Color.green); 

      JLabel label1 = new JLabel("One"); 

      subPanel1.add(label1); 

 

continued 
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continued 
 

      // Set up second subpanel 

      JPanel subPanel2 = new JPanel(); 

      subPanel2.setPreferredSize(new Dimension(150, 100)); 

      subPanel2.setBackground(Color.red); 

      JLabel label2 = new JLabel("Two"); 

      subPanel2.add(label2); 

 

      // Set up primary panel 

      JPanel primary = new JPanel(); 

      primary.setBackground(Color.blue); 

      primary.add(subPanel1); 

      primary.add(subPanel2); 

 

      frame.getContentPane().add(primary); 

      frame.pack(); 

      frame.setVisible(true); 

   } 

} 
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continued 
 

      // Set up second subpanel 

      JPanel subPanel2 = new JPanel(); 

      subPanel2.setPreferredSize (new Dimension(150, 100)); 

      subPanel2.setBackground (Color.red); 

      JLabel label2 = new JLabel("Two"); 

      subPanel2.add(label2); 

 

      // Set up primary panel 

      JPanel primary = new JPanel(); 

      primary.setBackground (Color.blue); 

      primary.add (subPanel1); 

      primary.add (subPanel2); 

 

      frame.getContentPane().add(primary); 

      frame.pack(); 

      frame.setVisible(true); 

   } 

} 

 

 

 

 

 

 

 

 

 

 

 

 



Outline 

Creating Objects 

The String Class 

The Random and Math Classes 

Formatting Output 

Enumerated Types 

Wrapper Classes 

Components and Containers 

Images 
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Images 
• Images can be displayed in a Java program in 

various ways 

• As we've seen, a JLabel object can be used to 
display a line of text 

• It can also be used to display an image 

• That is, a label can be composed of text, an image, 
or both at the same time 
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Images 

• The ImageIcon class is used to represent the 
image that is stored in a label 

• If text is also included, the position of the text 
relative to the image can be set explicitly 

• The alignment of the text and image within the 
label can be set as well 

• See LabelDemo.java  
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//******************************************************************** 

//  LabelDemo.java       Author: Lewis/Loftus 

// 

//  Demonstrates the use of image icons in labels. 

//******************************************************************** 

 

import java.awt.*; 

import javax.swing.*; 

 

public class LabelDemo 

{ 

   //----------------------------------------------------------------- 

   //  Creates and displays the primary application frame. 

   //----------------------------------------------------------------- 

   public static void main(String[] args) 

   { 

      JFrame frame = new JFrame("Label Demo"); 

      frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

 

      ImageIcon icon = new ImageIcon("devil.gif"); 

 

      JLabel label1, label2, label3; 

 

      label1 = new JLabel("Devil Left", icon, SwingConstants.CENTER); 

 

continued 
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continued 
 

      label2 = new JLabel("Devil Right", icon, SwingConstants.CENTER); 

      label2.setHorizontalTextPosition(SwingConstants.LEFT); 

      label2.setVerticalTextPosition(SwingConstants.BOTTOM); 

 

      label3 = new JLabel("Devil Above", icon, SwingConstants.CENTER); 

      label3.setHorizontalTextPosition(SwingConstants.CENTER); 

      label3.setVerticalTextPosition(SwingConstants.BOTTOM); 

 

      JPanel panel = new JPanel(); 

      panel.setBackground(Color.cyan); 

      panel.setPreferredSize(new Dimension(200, 250)); 

      panel.add(label1); 

      panel.add(label2); 

      panel.add(label3); 

 

      frame.getContentPane().add(panel); 

      frame.pack(); 

      frame.setVisible(true); 

   } 

} 
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continued 
 

      label2 = new JLabel ("Devil Right", icon, SwingConstants.CENTER); 

      label2.setHorizontalTextPosition (SwingConstants.LEFT); 

      label2.setVerticalTextPosition (SwingConstants.BOTTOM); 

 

      label3 = new JLabel ("Devil Above", icon, SwingConstants.CENTER); 

      label3.setHorizontalTextPosition (SwingConstants.CENTER); 

      label3.setVerticalTextPosition (SwingConstants.BOTTOM); 

 

      JPanel panel = new JPanel(); 

      panel.setBackground (Color.cyan); 

      panel.setPreferredSize (new Dimension (200, 250)); 

      panel.add(label1); 

      panel.add(label2); 

      panel.add(label3); 

 

      frame.getContentPane().add(panel); 

      frame.pack(); 

      frame.setVisible(true); 

   } 

} 

 

 

 

 

 

 

 

 

 



Summary 
• Chapter 3 focused on: 

– object creation and object references 

– the String class and its methods 

– the Java standard class library 

– the Random and Math classes 

– formatting output 

– enumerated types 

– wrapper classes 

– graphical components and containers 

– labels and images 
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