
Copyright © 2014 Pearson Education, Inc.

Chapter 3

Using Classes and Objects

Java Software Solutions

Foundations of Program Design

8th Edition

John Lewis

William Loftus

Using Classes and Objects

• We can create more interesting programs using predefined

classes and related objects

• Chapter 3 focuses on:

– object creation and object references

– the String class and its methods

– the Java API class library

– the Random and Math classes

– formatting output

– enumerated types

– wrapper classes

– graphical components and containers

– labels and images

Copyright © 2014 Pearson Education, Inc.

Outline

Creating Objects

The String Class

The Random and Math Classes

Formatting Output

Enumerated Types

Wrapper Classes

Components and Containers

Images

Copyright © 2014 Pearson Education, Inc.

Creating Objects

• A variable holds either a primitive value or a
reference to an object

• A class name can be used as a type to declare an
object reference variable

String title;

• No object is created with this declaration

• An object reference variable holds the address of
an object

• The object itself must be created separately

Copyright © 2014 Pearson Education, Inc.

Creating Objects

• Generally, we use the new operator to create an
object

• Creating an object is called instantiation

• An object is an instance of a particular class

title = new String("Java Software Solutions");

This calls the String constructor, which is

a special method that sets up the object

Copyright © 2014 Pearson Education, Inc.

Invoking Methods

• We've seen that once an object has been
instantiated, we can use the dot operator to invoke
its methods

numChars = title.length()

• A method may return a value, which can be used in
an assignment or expression

• A method invocation can be thought of as asking an
object to perform a service

Copyright © 2014 Pearson Education, Inc.

References

• Note that a primitive variable contains the value
itself, but an object variable contains the address of
the object

• An object reference can be thought of as a pointer
to the location of the object

• Rather than dealing with arbitrary addresses, we
often depict a reference graphically

"Steve Jobs" name1

num1 38

Copyright © 2014 Pearson Education, Inc.

Assignment Revisited

• The act of assignment takes a copy of a value and
stores it in a variable

• For primitive types:

num1 38

num2 96
Before:

num2 = num1;

num1 38

num2 38
After:

Copyright © 2014 Pearson Education, Inc.

Reference Assignment

• For object references, assignment copies the

address:

name2 = name1;

name1

name2
Before:

"Steve Jobs"

"Steve Wozniak"

name1

name2
After:

"Steve Jobs"

Copyright © 2014 Pearson Education, Inc.

Aliases

• Two or more references that refer to the same
object are called aliases of each other

• That creates an interesting situation: one object
can be accessed using multiple reference variables

• Aliases can be useful, but should be managed
carefully

• Changing an object through one reference
changes it for all of its aliases, because there is
really only one object

Copyright © 2014 Pearson Education, Inc.

Garbage Collection

• When an object no longer has any valid references
to it, it can no longer be accessed by the program

• The object is useless, and therefore is called
garbage

• Java performs automatic garbage collection
periodically, returning an object's memory to the
system for future use

• In other languages, the programmer is responsible
for performing garbage collection

Copyright © 2014 Pearson Education, Inc.

Outline

Creating Objects

The String Class

The Random and Math Classes

Formatting Output

Enumerated Types

Wrapper Classes

Components and Containers

Images

Copyright © 2014 Pearson Education, Inc.

The String Class

• Because strings are so common, we don't have to
use the new operator to create a String object

title = "Java Software Solutions";

• This is special syntax that works only for strings

• Each string literal (enclosed in double quotes)
represents a String object

Copyright © 2014 Pearson Education, Inc.

String Methods

• Once a String object has been created, neither
its value nor its length can be changed

• Therefore we say that an object of the String
class is immutable

• However, several methods of the String class
return new String objects that are modified
versions of the original

Copyright © 2014 Pearson Education, Inc.

String Indexes

• It is occasionally helpful to refer to a particular
character within a string

• This can be done by specifying the character's
numeric index

• The indexes begin at zero in each string

• In the string "Hello", the character 'H' is at
index 0 and the 'o' is at index 4

• See StringMutation.java

Copyright © 2014 Pearson Education, Inc.

Copyright © 2014 Pearson Education, Inc.

//**

// StringMutation.java Author: Lewis/Loftus

//

// Demonstrates the use of the String class and its methods.

//**

public class StringMutation

{

 //---

 // Prints a string and various mutations of it.

 //---

 public static void main(String[] args)

 {

 String phrase = "Change is inevitable";

 String mutation1, mutation2, mutation3, mutation4;

 System.out.println("Original string: \"" + phrase + "\"");

 System.out.println("Length of string: " + phrase.length());

 mutation1 = phrase.concat(", except from vending machines.");

 mutation2 = mutation1.toUpperCase();

 mutation3 = mutation2.replace('E', 'X');

 mutation4 = mutation3.substring(3, 30);

continued

Copyright © 2014 Pearson Education, Inc.

continued

 // Print each mutated string

 System.out.println("Mutation #1: " + mutation1);

 System.out.println("Mutation #2: " + mutation2);

 System.out.println("Mutation #3: " + mutation3);

 System.out.println("Mutation #4: " + mutation4);

 System.out.println("Mutated length: " + mutation4.length());

 }

}

Copyright © 2014 Pearson Education, Inc.

continued

 // Print each mutated string

 System.out.println ("Mutation #1: " + mutation1);

 System.out.println ("Mutation #2: " + mutation2);

 System.out.println ("Mutation #3: " + mutation3);

 System.out.println ("Mutation #4: " + mutation4);

 System.out.println("Mutated length: " + mutation4.length());

 }

}

Output

Original string: "Change is inevitable"

Length of string: 20

Mutation #1: Change is inevitable, except from vending machines.

Mutation #2: CHANGE IS INEVITABLE, EXCEPT FROM VENDING MACHINES.

Mutation #3: CHANGX IS INXVITABLX, XXCXPT FROM VXNDING MACHINXS.

Mutation #4: NGX IS INXVITABLX, XXCXPT F

Mutated length: 27

Quick Check

Copyright © 2014 Pearson Education, Inc.

What output is produced by the following?

String str = "Space, the final frontier.";

System.out.println(str.length());

System.out.println(str.substring(7));

System.out.println(str.toUpperCase());

System.out.println(str.length());

Quick Check

Copyright © 2014 Pearson Education, Inc.

What output is produced by the following?

String str = "Space, the final frontier.";

System.out.println(str.length());

System.out.println(str.substring(7));

System.out.println(str.toUpperCase());

System.out.println(str.length());

26

the final frontier.

SPACE, THE FINAL FRONTIER.

26

Outline

Creating Objects

The String Class

The Random and Math Classes

Formatting Output

Enumerated Types

Wrapper Classes

Components and Containers

Images

Copyright © 2014 Pearson Education, Inc.

Class Libraries

• A class library is a collection of classes that we can

use when developing programs

• The Java standard class library is part of any Java

development environment

• Its classes are not part of the Java language per se,

but we rely on them heavily

• Various classes we've already used (System ,

Scanner, String) are part of the Java standard

class library

Copyright © 2014 Pearson Education, Inc.

The Java API

• The Java class library is sometimes referred to as

the Java API

• API stands for Application Programming Interface

• Clusters of related classes are sometimes referred

to as specific APIs:

– The Swing API

– The Database API

Copyright © 2014 Pearson Education, Inc.

The Java API
• Get comfortable navigating the online Java API

documentation

Copyright © 2014 Pearson Education, Inc.

Packages

• For purposes of accessing them, classes in the
Java API are organized into packages

• These often overlap with specific APIs

• Examples:

Package

java.lang

java.applet

java.awt

javax.swing

java.net

java.util

javax.xml.parsers

Purpose

General support

Creating applets for the web

Graphics and graphical user interfaces

Additional graphics capabilities

Network communication

Utilities

XML document processing

Copyright © 2014 Pearson Education, Inc.

The import Declaration

• When you want to use a class from a package, you
could use its fully qualified name

java.util.Scanner

• Or you can import the class, and then use just the
class name

import java.util.Scanner;

• To import all classes in a particular package, you
can use the * wildcard character

import java.util.*;

Copyright © 2014 Pearson Education, Inc.

The import Declaration

• All classes of the java.lang package are
imported automatically into all programs

• It's as if all programs contain the following line:

import java.lang.*;

• That's why we didn't have to import the System or
String classes explicitly in earlier programs

• The Scanner class, on the other hand, is part of
the java.util package, and therefore must be
imported

Copyright © 2014 Pearson Education, Inc.

The Random Class

• The Random class is part of the java.util
package

• It provides methods that generate pseudorandom
numbers

• A Random object performs complicated calculations
based on a seed value to produce a stream of
seemingly random values

• See RandomNumbers.java

Copyright © 2014 Pearson Education, Inc.

Copyright © 2014 Pearson Education, Inc.

//**

// RandomNumbers.java Author: Lewis/Loftus

//

// Demonstrates the creation of pseudo-random numbers using the

// Random class.

//**

import java.util.Random;

public class RandomNumbers

{

 //---

 // Generates random numbers in various ranges.

 //---

 public static void main(String[] args)

 {

 Random generator = new Random();

 int num1;

 float num2;

 num1 = generator.nextInt();

 System.out.println("A random integer: " + num1);

 num1 = generator.nextInt(10);

 System.out.println("From 0 to 9: " + num1);

continued

Copyright © 2014 Pearson Education, Inc.

continued

 num1 = generator.nextInt(10) + 1;

 System.out.println("From 1 to 10: " + num1);

 num1 = generator.nextInt(15) + 20;

 System.out.println("From 20 to 34: " + num1);

 num1 = generator.nextInt(20) - 10;

 System.out.println("From -10 to 9: " + num1);

 num2 = generator.nextFloat();

 System.out.println("A random float (between 0-1): " + num2);

 num2 = generator.nextFloat() * 6; // 0.0 to 5.999999

 num1 = (int)num2 + 1;

 System.out.println("From 1 to 6: " + num1);

 }

}

Copyright © 2014 Pearson Education, Inc.

continued

 num1 = generator.nextInt(10) + 1;

 System.out.println ("From 1 to 10: " + num1);

 num1 = generator.nextInt(15) + 20;

 System.out.println ("From 20 to 34: " + num1);

 num1 = generator.nextInt(20) - 10;

 System.out.println ("From -10 to 9: " + num1);

 num2 = generator.nextFloat();

 System.out.println("A random float (between 0-1): " + num2);

 num2 = generator.nextFloat() * 6; // 0.0 to 5.999999

 num1 = (int)num2 + 1;

 System.out.println("From 1 to 6: " + num1);

 }

}

Sample Run

A random integer: 672981683

From 0 to 9: 0

From 1 to 10: 3

From 20 to 34: 30

From -10 to 9: -4

A random float (between 0-1): 0.18538326

From 1 to 6: 3

Quick Check

Copyright © 2014 Pearson Education, Inc.

Given a Random object named gen, what range of

values are produced by the following expressions?

gen.nextInt(25)

gen.nextInt(6) + 1

gen.nextInt(100) + 10

gen.nextInt(50) + 100

gen.nextInt(10) – 5

gen.nextInt(22) + 12

Quick Check

Copyright © 2014 Pearson Education, Inc.

Given a Random object named gen, what range of

values are produced by the following expressions?

gen.nextInt(25)

gen.nextInt(6) + 1

gen.nextInt(100) + 10

gen.nextInt(50) + 100

gen.nextInt(10) – 5

gen.nextInt(22) + 12

Range

0 to 24

1 to 6

10 to 109

100 to 149

-5 to 4

12 to 33

Quick Check

Copyright © 2014 Pearson Education, Inc.

Write an expression that produces a random integer

in the following ranges:

Range

0 to 12

1 to 20

15 to 20

-10 to 0

Quick Check

Copyright © 2014 Pearson Education, Inc.

Write an expression that produces a random integer

in the following ranges:

gen.nextInt(13)

gen.nextInt(20) + 1

gen.nextInt(6) + 15

gen.nextInt(11) – 10

Range

0 to 12

1 to 20

15 to 20

-10 to 0

The Math Class

• The Math class is part of the java.lang package

• The Math class contains methods that perform
various mathematical functions

• These include:

– absolute value

– square root

– exponentiation

– trigonometric functions

Copyright © 2014 Pearson Education, Inc.

The Math Class

• The methods of the Math class are static methods
(also called class methods)

• Static methods are invoked through the class name
– no object of the Math class is needed

value = Math.cos(90) + Math.sqrt(delta);

• We discuss static methods further in Chapter 7

• See Quadratic.java

Copyright © 2014 Pearson Education, Inc.

Copyright © 2014 Pearson Education, Inc.

//**

// Quadratic.java Author: Lewis/Loftus

//

// Demonstrates the use of the Math class to perform a calculation

// based on user input.

//**

import java.util.Scanner;

public class Quadratic

{

 //---

 // Determines the roots of a quadratic equation.

 //---

 public static void main(String[] args)

 {

 int a, b, c; // ax^2 + bx + c

 double discriminant, root1, root2;

 Scanner scan = new Scanner(System.in);

 System.out.print("Enter the coefficient of x squared: ");

 a = scan.nextInt();

continued

Copyright © 2014 Pearson Education, Inc.

 continued

 System.out.print("Enter the coefficient of x: ");

 b = scan.nextInt();

 System.out.print("Enter the constant: ");

 c = scan.nextInt();

 // Use the quadratic formula to compute the roots.

 // Assumes a positive discriminant.

 discriminant = Math.pow(b, 2) - (4 * a * c);

 root1 = ((-1 * b) + Math.sqrt(discriminant)) / (2 * a);

 root2 = ((-1 * b) - Math.sqrt(discriminant)) / (2 * a);

 System.out.println("Root #1: " + root1);

 System.out.println("Root #2: " + root2);

 }

}

Copyright © 2014 Pearson Education, Inc.

 continued

 System.out.print ("Enter the coefficient of x: ");

 b = scan.nextInt();

 System.out.print ("Enter the constant: ");

 c = scan.nextInt();

 // Use the quadratic formula to compute the roots.

 // Assumes a positive discriminant.

 discriminant = Math.pow(b, 2) - (4 * a * c);

 root1 = ((-1 * b) + Math.sqrt(discriminant)) / (2 * a);

 root2 = ((-1 * b) - Math.sqrt(discriminant)) / (2 * a);

 System.out.println("Root #1: " + root1);

 System.out.println("Root #2: " + root2);

 }

}

Sample Run

Enter the coefficient of x squared: 3

Enter the coefficient of x: 8

Enter the constant: 4

Root #1: -0.6666666666666666

Root #2: -2.0

Outline

Creating Objects

The String Class

The Random and Math Classes

Formatting Output

Enumerated Types

Wrapper Classes

Components and Containers

Images

Copyright © 2014 Pearson Education, Inc.

Formatting Output

• It is often necessary to format output values in
certain ways so that they can be presented properly

• The Java standard class library contains classes
that provide formatting capabilities

• The NumberFormat class allows you to format
values as currency or percentages

• The DecimalFormat class allows you to format
values based on a pattern

• Both are part of the java.text package

Copyright © 2014 Pearson Education, Inc.

Formatting Output

• The NumberFormat class has static methods that

return a formatter object

getCurrencyInstance()

getPercentInstance()

• Each formatter object has a method called
format that returns a string with the specified

information in the appropriate format

• See Purchase.java

Copyright © 2014 Pearson Education, Inc.

Copyright © 2014 Pearson Education, Inc.

//**

// Purchase.java Author: Lewis/Loftus

//

// Demonstrates the use of the NumberFormat class to format output.

//**

import java.util.Scanner;

import java.text.NumberFormat;

public class Purchase

{

 //---

 // Calculates the final price of a purchased item using values

 // entered by the user.

 //---

 public static void main(String[] args)

 {

 final double TAX_RATE = 0.06; // 6% sales tax

 int quantity;

 double subtotal, tax, totalCost, unitPrice;

 Scanner scan = new Scanner(System.in);

continued

Copyright © 2014 Pearson Education, Inc.

continued

 NumberFormat fmt1 = NumberFormat.getCurrencyInstance();

 NumberFormat fmt2 = NumberFormat.getPercentInstance();

 System.out.print("Enter the quantity: ");

 quantity = scan.nextInt();

 System.out.print("Enter the unit price: ");

 unitPrice = scan.nextDouble();

 subtotal = quantity * unitPrice;

 tax = subtotal * TAX_RATE;

 totalCost = subtotal + tax;

 // Print output with appropriate formatting

 System.out.println("Subtotal: " + fmt1.format(subtotal));

 System.out.println("Tax: " + fmt1.format(tax) + " at "

 + fmt2.format(TAX_RATE));

 System.out.println("Total: " + fmt1.format(totalCost));

 }

}

Copyright © 2014 Pearson Education, Inc.

continued

 NumberFormat fmt1 = NumberFormat.getCurrencyInstance();

 NumberFormat fmt2 = NumberFormat.getPercentInstance();

 System.out.print ("Enter the quantity: ");

 quantity = scan.nextInt();

 System.out.print("Enter the unit price: ");

 unitPrice = scan.nextDouble();

 subtotal = quantity * unitPrice;

 tax = subtotal * TAX_RATE;

 totalCost = subtotal + tax;

 // Print output with appropriate formatting

 System.out.println("Subtotal: " + fmt1.format(subtotal));

 System.out.println("Tax: " + fmt1.format(tax) + " at "

 + fmt2.format(TAX_RATE));

 System.out.println("Total: " + fmt1.format(totalCost));

 }

}

Sample Run

Enter the quantity: 5

Enter the unit price: 3.87

Subtotal: $19.35

Tax: $1.16 at 6%

Total: $20.51

Formatting Output

• The DecimalFormat class can be used to format
a floating point value in various ways

• For example, you can specify that the number
should be truncated to three decimal places

• The constructor of the DecimalFormat class
takes a string that represents a pattern for the
formatted number

• See CircleStats.java

Copyright © 2014 Pearson Education, Inc.

Copyright © 2014 Pearson Education, Inc.

//**

// CircleStats.java Author: Lewis/Loftus

//

// Demonstrates the formatting of decimal values using the

// DecimalFormat class.

//**

import java.util.Scanner;

import java.text.DecimalFormat;

public class CircleStats

{

 //---

 // Calculates the area and circumference of a circle given its

 // radius.

 //---

 public static void main(String[] args)

 {

 int radius;

 double area, circumference;

 Scanner scan = new Scanner(System.in);

continued

Copyright © 2014 Pearson Education, Inc.

continued

 System.out.print ("Enter the circle's radius: ");

 radius = scan.nextInt();

 area = Math.PI * Math.pow(radius, 2);

 circumference = 2 * Math.PI * radius;

 // Round the output to three decimal places

 DecimalFormat fmt = new DecimalFormat ("0.###");

 System.out.println ("The circle's area: " + fmt.format(area));

 System.out.println ("The circle's circumference: "

 + fmt.format(circumference));

 }

}

Copyright © 2014 Pearson Education, Inc.

continued

 System.out.print ("Enter the circle's radius: ");

 radius = scan.nextInt();

 area = Math.PI * Math.pow(radius, 2);

 circumference = 2 * Math.PI * radius;

 // Round the output to three decimal places

 DecimalFormat fmt = new DecimalFormat("0.###");

 System.out.println("The circle's area: " + fmt.format(area));

 System.out.println("The circle's circumference: "

 + fmt.format(circumference));

 }

}

Sample Run

Enter the circle's radius: 5

The circle's area: 78.54

The circle's circumference: 31.416

Outline

Creating Objects

The String Class

The Random and Math Classes

Formatting Output

Enumerated Types

Wrapper Classes

Components and Containers

Images

Copyright © 2014 Pearson Education, Inc.

Enumerated Types

• Java allows you to define an enumerated type,
which can then be used to declare variables

• An enumerated type declaration lists all possible
values for a variable of that type

• The values are identifiers of your own choosing

• The following declaration creates an enumerated
type called Season

 enum Season {winter, spring, summer, fall};

• Any number of values can be listed

Copyright © 2014 Pearson Education, Inc.

Enumerated Types

• Once a type is defined, a variable of that type can
be declared:

Season time;

• And it can be assigned a value:

time = Season.fall;

• The values are referenced through the name of the
type

• Enumerated types are type-safe – you cannot
assign any value other than those listed

Copyright © 2014 Pearson Education, Inc.

Ordinal Values

• Internally, each value of an enumerated type is

stored as an integer, called its ordinal value

• The first value in an enumerated type has an

ordinal value of zero, the second one, and so on

• However, you cannot assign a numeric value to an

enumerated type, even if it corresponds to a valid

ordinal value

Copyright © 2014 Pearson Education, Inc.

Enumerated Types

• The declaration of an enumerated type is a special
type of class, and each variable of that type is an
object

• The ordinal method returns the ordinal value of
the object

• The name method returns the name of the identifier
corresponding to the object's value

• See IceCream.java

Copyright © 2014 Pearson Education, Inc.

Copyright © 2014 Pearson Education, Inc.

//**

// IceCream.java Author: Lewis/Loftus

//

// Demonstrates the use of enumerated types.

//**

public class IceCream

{

 enum Flavor {vanilla, chocolate, strawberry, fudgeRipple, coffee,

 rockyRoad, mintChocolateChip, cookieDough}

 //---

 // Creates and uses variables of the Flavor type.

 //---

 public static void main (String[] args)

 {

 Flavor cone1, cone2, cone3;

 cone1 = Flavor.rockyRoad;

 cone2 = Flavor.chocolate;

 System.out.println("cone1 value: " + cone1);

 System.out.println("cone1 ordinal: " + cone1.ordinal());

 System.out.println("cone1 name: " + cone1.name());

continued

Copyright © 2014 Pearson Education, Inc.

continued

 System.out.println();

 System.out.println("cone2 value: " + cone2);

 System.out.println("cone2 ordinal: " + cone2.ordinal());

 System.out.println("cone2 name: " + cone2.name());

 cone3 = cone1;

 System.out.println();

 System.out.println("cone3 value: " + cone3);

 System.out.println("cone3 ordinal: " + cone3.ordinal());

 System.out.println("cone3 name: " + cone3.name());

 }

}

Copyright © 2014 Pearson Education, Inc.

continued

 System.out.println ();

 System.out.println ("cone2 value: " + cone2);

 System.out.println ("cone2 ordinal: " + cone2.ordinal());

 System.out.println ("cone2 name: " + cone2.name());

 cone3 = cone1;

 System.out.println ();

 System.out.println ("cone3 value: " + cone3);

 System.out.println ("cone3 ordinal: " + cone3.ordinal());

 System.out.println("cone3 name: " + cone3.name());

 }

}

Output

cone1 value: rockyRoad

cone1 ordinal: 5

cone1 name: rockyRoad

cone2 value: chocolate

cone2 ordinal: 1

cone2 name: chocolate

cone3 value: rockyRoad

cone3 ordinal: 5

cone3 name: rockyRoad

Outline

Creating Objects

The String Class

The Random and Math Classes

Formatting Output

Enumerated Types

Wrapper Classes

Components and Containers

Images

Copyright © 2014 Pearson Education, Inc.

Wrapper Classes
• The java.lang package contains wrapper

classes that correspond to each primitive type:

Primitive Type Wrapper Class

byte Byte

short Short

int Integer

long Long

float Float

double Double

char Character

boolean Boolean

Wrapper Classes
• The following declaration creates an Integer

object which represents the integer 40 as an object

 Integer age = new Integer(40);

• An object of a wrapper class can be used in any
situation where a primitive value will not suffice

• For example, some objects serve as containers of
other objects

• Primitive values could not be stored in such
containers, but wrapper objects could be

Copyright © 2014 Pearson Education, Inc.

Wrapper Classes

• Wrapper classes also contain static methods that
help manage the associated type

• For example, the Integer class contains a
method to convert an integer stored in a String
to an int value:

num = Integer.parseInt(str);

• They often contain useful constants as well

• For example, the Integer class contains
MIN_VALUE and MAX_VALUE which hold the
smallest and largest int values

Copyright © 2014 Pearson Education, Inc.

Autoboxing

• Autoboxing is the automatic conversion of a
primitive value to a corresponding wrapper object:

 Integer obj;

 int num = 42;

 obj = num;

• The assignment creates the appropriate Integer
object

• The reverse conversion (called unboxing) also
occurs automatically as needed

Copyright © 2014 Pearson Education, Inc.

Quick Check

Copyright © 2014 Pearson Education, Inc.

Are the following assignments valid? Explain.

Double value = 15.75;

Character ch = new Character('T');

char myChar = ch;

Quick Check

Copyright © 2014 Pearson Education, Inc.

Are the following assignments valid? Explain.

Double value = 15.75;

Character ch = new Character('T');

char myChar = ch;

Yes. The double literal is autoboxed into a Double object.

Yes, the char in the object is unboxed before the assignment.

Outline

Creating Objects

The String Class

The Random and Math Classes

Formatting Output

Enumerated Types

Wrapper Classes

Components and Containers

Images

Copyright © 2014 Pearson Education, Inc.

Graphical Applications

• Except for the applets seen in Chapter 2, the
example programs we've explored thus far have
been text-based

• They are called command-line applications, which
interact with the user using simple text prompts

• Let's examine some Java applications that have
graphical components

• These components will serve as a foundation to
programs that have true graphical user interfaces
(GUIs)

Copyright © 2014 Pearson Education, Inc.

GUI Components
• A GUI component is an object that represents a

screen element such as a button or a text field

• GUI-related classes are defined primarily in the
java.awt and the javax.swing packages

• The Abstract Windowing Toolkit (AWT) was the
original Java GUI package

• The Swing package provides additional and more
versatile components

• Both packages are needed to create a Java GUI-
based program

Copyright © 2014 Pearson Education, Inc.

GUI Containers
• A GUI container is a component that is used to hold

and organize other components

• A frame is a container displayed as a separate
window with a title bar

• It can be repositioned and resized on the screen as
needed

• A panel is a container that cannot be displayed on
its own but is used to organize other components

• A panel must be added to another container (like a
frame or another panel) to be displayed

Copyright © 2014 Pearson Education, Inc.

GUI Containers

• A GUI container can be classified as either
heavyweight or lightweight

• A heavyweight container is one that is managed by
the underlying operating system

• A lightweight container is managed by the Java
program itself

• Occasionally this distinction is important

• A frame is a heavyweight container and a panel is a
lightweight container

Copyright © 2014 Pearson Education, Inc.

Labels

• A label is a GUI component that displays a line of
text and/or an image

• Labels are usually used to display information or
identify other components in the interface

• Let's look at a program that organizes two labels in
a panel and displays that panel in a frame

• This program is not interactive, but the frame can
be repositioned and resized

• See Authority.java

Copyright © 2014 Pearson Education, Inc.

Copyright © 2014 Pearson Education, Inc.

//**

// Authority.java Author: Lewis/Loftus

//

// Demonstrates the use of frames, panels, and labels.

//**

import java.awt.*;

import javax.swing.*;

public class Authority

{

 //---

 // Displays some words of wisdom.

 //---

 public static void main(String[] args)

 {

 JFrame frame = new JFrame("Authority");

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JPanel primary = new JPanel();

 primary.setBackground(Color.yellow);

 primary.setPreferredSize(new Dimension(250, 75));

continued

Copyright © 2014 Pearson Education, Inc.

continued

 JLabel label1 = new JLabel("Question authority,");

 JLabel label2 = new JLabel("but raise your hand first.");

 primary.add(label1);

 primary.add(label2);

 frame.getContentPane().add(primary);

 frame.pack();

 frame.setVisible(true);

 }

}

Copyright © 2014 Pearson Education, Inc.

continued

 JLabel label1 = new JLabel ("Question authority,");

 JLabel label2 = new JLabel ("but raise your hand first.");

 primary.add (label1);

 primary.add(label2);

 frame.getContentPane().add(primary);

 frame.pack();

 frame.setVisible(true);

 }

}

Nested Panels

• Containers that contain other components make up

the containment hierarchy of an interface

• This hierarchy can be as intricate as needed to

create the visual effect desired

• The following example nests two panels inside a

third panel – note the effect this has as the frame is

resized

• See NestedPanels.java

Copyright © 2014 Pearson Education, Inc.

Copyright © 2014 Pearson Education, Inc.

//**

// NestedPanels.java Author: Lewis/Loftus

//

// Demonstrates a basic componenet hierarchy.

//**

import java.awt.*;

import javax.swing.*;

public class NestedPanels

{

 //---

 // Presents two colored panels nested within a third.

 //---

 public static void main(String[] args)

 {

 JFrame frame = new JFrame("Nested Panels");

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Set up first subpanel

 JPanel subPanel1 = new JPanel();

 subPanel1.setPreferredSize(new Dimension(150, 100));

 subPanel1.setBackground(Color.green);

 JLabel label1 = new JLabel("One");

 subPanel1.add(label1);

continued

Copyright © 2014 Pearson Education, Inc.

continued

 // Set up second subpanel

 JPanel subPanel2 = new JPanel();

 subPanel2.setPreferredSize(new Dimension(150, 100));

 subPanel2.setBackground(Color.red);

 JLabel label2 = new JLabel("Two");

 subPanel2.add(label2);

 // Set up primary panel

 JPanel primary = new JPanel();

 primary.setBackground(Color.blue);

 primary.add(subPanel1);

 primary.add(subPanel2);

 frame.getContentPane().add(primary);

 frame.pack();

 frame.setVisible(true);

 }

}

Copyright © 2014 Pearson Education, Inc.

continued

 // Set up second subpanel

 JPanel subPanel2 = new JPanel();

 subPanel2.setPreferredSize (new Dimension(150, 100));

 subPanel2.setBackground (Color.red);

 JLabel label2 = new JLabel("Two");

 subPanel2.add(label2);

 // Set up primary panel

 JPanel primary = new JPanel();

 primary.setBackground (Color.blue);

 primary.add (subPanel1);

 primary.add (subPanel2);

 frame.getContentPane().add(primary);

 frame.pack();

 frame.setVisible(true);

 }

}

Outline

Creating Objects

The String Class

The Random and Math Classes

Formatting Output

Enumerated Types

Wrapper Classes

Components and Containers

Images

Copyright © 2014 Pearson Education, Inc.

Images
• Images can be displayed in a Java program in

various ways

• As we've seen, a JLabel object can be used to
display a line of text

• It can also be used to display an image

• That is, a label can be composed of text, an image,
or both at the same time

Copyright © 2014 Pearson Education, Inc.

Images

• The ImageIcon class is used to represent the
image that is stored in a label

• If text is also included, the position of the text
relative to the image can be set explicitly

• The alignment of the text and image within the
label can be set as well

• See LabelDemo.java

Copyright © 2014 Pearson Education, Inc.

Copyright © 2014 Pearson Education, Inc.

//**

// LabelDemo.java Author: Lewis/Loftus

//

// Demonstrates the use of image icons in labels.

//**

import java.awt.*;

import javax.swing.*;

public class LabelDemo

{

 //---

 // Creates and displays the primary application frame.

 //---

 public static void main(String[] args)

 {

 JFrame frame = new JFrame("Label Demo");

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 ImageIcon icon = new ImageIcon("devil.gif");

 JLabel label1, label2, label3;

 label1 = new JLabel("Devil Left", icon, SwingConstants.CENTER);

continued

Copyright © 2014 Pearson Education, Inc.

continued

 label2 = new JLabel("Devil Right", icon, SwingConstants.CENTER);

 label2.setHorizontalTextPosition(SwingConstants.LEFT);

 label2.setVerticalTextPosition(SwingConstants.BOTTOM);

 label3 = new JLabel("Devil Above", icon, SwingConstants.CENTER);

 label3.setHorizontalTextPosition(SwingConstants.CENTER);

 label3.setVerticalTextPosition(SwingConstants.BOTTOM);

 JPanel panel = new JPanel();

 panel.setBackground(Color.cyan);

 panel.setPreferredSize(new Dimension(200, 250));

 panel.add(label1);

 panel.add(label2);

 panel.add(label3);

 frame.getContentPane().add(panel);

 frame.pack();

 frame.setVisible(true);

 }

}

Copyright © 2014 Pearson Education, Inc.

continued

 label2 = new JLabel ("Devil Right", icon, SwingConstants.CENTER);

 label2.setHorizontalTextPosition (SwingConstants.LEFT);

 label2.setVerticalTextPosition (SwingConstants.BOTTOM);

 label3 = new JLabel ("Devil Above", icon, SwingConstants.CENTER);

 label3.setHorizontalTextPosition (SwingConstants.CENTER);

 label3.setVerticalTextPosition (SwingConstants.BOTTOM);

 JPanel panel = new JPanel();

 panel.setBackground (Color.cyan);

 panel.setPreferredSize (new Dimension (200, 250));

 panel.add(label1);

 panel.add(label2);

 panel.add(label3);

 frame.getContentPane().add(panel);

 frame.pack();

 frame.setVisible(true);

 }

}

Summary
• Chapter 3 focused on:

– object creation and object references

– the String class and its methods

– the Java standard class library

– the Random and Math classes

– formatting output

– enumerated types

– wrapper classes

– graphical components and containers

– labels and images

Copyright © 2014 Pearson Education, Inc.

