Chapter 4
Writing Classes

Java Software Solutions

Foundations of Program Design
8th Edition

John Lewis
Willlam Loftus

Addison-Wesley
is an imprint of

PEARSON Copyright © 2014 Pearson Education, Inc.
I B

Writing Classes

* We've been using predefined classes from the Java
APIl. Now we will learn to write our own classes.

« Chapter 4 focuses on:

— class definitions

— Instance data

— encapsulation and Java modifiers

— method declaration and parameter passing
— constructors

— graphical objects

— events and listeners

— buttons and text fields

Copyright © 2014 Pearson Education, Inc.

Outline

——> Anatomy of a Class
Encapsulation
Anatomy of a Method
Graphical Objects
Graphical User Interfaces

Buttons and Text Fields

Copyright © 2014 Pearson Education, Inc.

Writing Classes

* The programs we've written in previous examples
have used classes defined in the Java standard
class library

* Now we will begin to design programs that rely on
classes that we write ourselves

* The class that contains the main method is just the
starting point of a program

* True object-oriented programming is based on
defining classes that represent objects with well-
defined characteristics and functionality

Copyright © 2014 Pearson Education, Inc.

Examples of Classes

Class

Attributes

Operations

Student

Rectangle

Aquarium

Flight

Employee

Name

Address

Major

Grade point average

Length
Width
Color

Material
Length
Width
Height

Airline

Flight number
Origin city
Destination city
Current status

Name
Department
Title

Salary

Set address
Set major
Compute grade point average

Set length
Set width
Set color

Set material

Set length

Set width

Set height

Compute volume
Compute filled weight

Set airline
Set flight number
Determine status

Set department
Set title

Set salary
Compute wages
Compute bonus
Compute taxes

Copyright © 2014 Pearson Education, Inc.

Classes and Objects

Recall from our overview of objects in Chapter 1
that an object has state and behavior

Consider a six-sided die (singular of dice)

— It's state can be defined as which face is showing
— It's primary behavior is that it can be rolled

We represent a die by designing a class called
Die that models this state and behavior

— The class serves as the blueprint for a die object

We can then instantiate as many die objects as we
need for any particular program

Copyright © 2014 Pearson Education, Inc.

Classes

A class can contain data declarations and method

declarations

//;nt size, weight

char category;

~

r

Data declarations

Method declarations

Copyright © 2014 Pearson Education, Inc.

Classes

* The values of the data define the state of an object
created from the class

* The functionality of the methods define the
behaviors of the object

* For our Die class, we might declare an integer
called facevalue that represents the current
value showing on the face

* One of the methods would “roll” the die by setting
faceValue to arandom number between one

and six

Copyright © 2014 Pearson Education, Inc.

Classes

« We’'ll want to design the Die class so thatitis a
versatile and reusable resource

* Any given program will probably not use all
operations of a given class

e See RollingDice.java
e See Die.java

Copyright © 2014 Pearson Education, Inc.

//**
// RollingDice.java Author: Lewis/Loftus
//
// Demonstrates the creation and use of a user-defined class.
//**
public class RollingDice
{
e
// Creates two Die objects and rolls them several times.
e e
public static void main(String[] args)
{
Die diel, die2;
int sum;
diel = new Die();
die2 = new Die();
diel.roll();
die2.roll () ;
System.out.println("Die One: " + diel + ", Die Two: " + die2);
continue

Copyright © 2014 Pearson Education, Inc.

continue

diel.roll () ;
die2.setFaceValue (4) ;

System.out.println("Die One: " + diel + ", Die Two: " + die2);

sum = diel.getFaceValue() + die2.getFaceValue() ;
System.out.println("Sum: " + sum);

sum = diel.roll() + die2.roll();

System.out.println("Die One: " + diel + ", Die Two: " + die2);
System.out.println("New sum: " + sum);

Copyright © 2014 Pearson Education, Inc.

continue Sample Run

diel.roll(); Die One: 5, Die Two: 2

die2.setFaceV| Die One: 1, Die Two: 4
System.out.prl Sum: 5 , Die Two: " + die2);

Die One: 4, Die Two: 2

= iel. ’
sum diel.ge New sum: 6 lue ()
System.out.pr
sum = diel.roll() + die2.roll();
System.out.println("Die One: " + diel + ", Die Two: " + die2);

System.out.println("New sum: " + sum);

Copyright © 2014 Pearson Education, Inc.

//**

// Die.java Author: Lewis/Loftus
//

// Represents one die (singular of dice) with faces showing values
// between 1 and 6.
//**

public class Die

{
private final int MAX = 6; // maximum face value
private int faceValue; // current value showing on the die
/=== m e -
// Constructor: Sets the initial face value.
[/ m e
public Die ()
{
facevalue = 1;
}
continue

Copyright © 2014 Pearson Education, Inc.

continue

/=== m =
// Rolls the die and returns the result.
/=== ==
public int roll ()
{
faceValue = (int) (Math.random() * MAX) + 1;
return faceValue;
}
/===

public void setFaceValue (int wvalue)

{

faceValue = value;

public int getFaceValue ()
{

return faceValue;

continue

Copyright © 2014 Pearson Education, Inc.

continue

[] == e
// Returns a string representation of this die.

[] == e e
public String toString()

{

String result = Integer.toString(faceValue)

return result;

Copyright © 2014 Pearson Education, Inc.

The Die Class

 The Die class contains two data values
— a constant MAX that represents the maximum face value

— an integer facevalue that represents the current face
value

e The roll method uses the random method of the
Math class to determine a new face value

* There are also methods to explicitly set and
retrieve the current face value at any time

Copyright © 2014 Pearson Education, Inc.

The toString Method

It's good practice to define a toString method for
a class

The toString method returns a character string
that represents the object in some way

It is called automatically when an object is
concatenated to a string or when it is passed to the
println method

It's also convenient for debugging problems

Copyright © 2014 Pearson Education, Inc.

Constructors

* As mentioned previously, a constructor is used to
set up an object when it is initially created

A constructor has the same name as the class

e The Die constructor is used to set the Initial face
value of each new die object to one

« We examine constructors in more detall later in this
chapter

Copyright © 2014 Pearson Education, Inc.

Data Scope

The scope of data Is the area in a program in which

that data can

ne referenced (used)

Data declareco

at the class level can be referenced

by all methods in that class

Data declared within a method can be used only In

that method

Data declared within a method is called local data

n the Die class, the variable result Is declared

Inside the toString method -- it Is local to that
method and cannot be referenced anywhere else

Copyright © 2014 Pearson Education, Inc.

Instance Data

« A variable declared at the class level (such as
faceValue) Is called instance data

« Each instance (object) has its own instance variable

* A class declares the type of the data, but it does not
reserve memory space for it

 Each time a Die object is created, a new
faceValue variable is created as well

* The objects of a class share the method definitions,
but each object has its own data space

« That's the only way two objects can have different
states

Copyright © 2014 Pearson Education, Inc.

Instance Data

* We can depict the two Die objects from the
RollingDice program as follows:

diel =[faceValue 5 }

die2 =[faceValue 2 }

Each object maintains its own facevalue
variable, and thus its own state

Copyright © 2014 Pearson Education, Inc.

UML Diagrams
« UML stands for the Unified Modeling Language

 UML diagrams show relationships among classes
and objects

A UML class diagram consists of one or more
classes, each with sections for the class name,
attributes (data), and operations (methods)

* Lines between classes represent associations

A dotted arrow shows that one class uses the other
(calls its methods)

Copyright © 2014 Pearson Education, Inc.

UML Class Diagrams

A UML class diagram for the RollingDice

program:

RollingDice

Die

main (args : String[]) : void

faceValue : int

roll() : int

setFaceValue (int value) : void
getFaceValue() : int

toString() : String

Quick Check

What is the relationship between a class and an
object?

Copyright © 2014 Pearson Education, Inc.

Quick Check

What is the relationship between a class and an
object?

A class is the definition/pattern/blueprint of an
object. It defines the data that will be managed
by an object but doesn't reserve memory space
for it. Multiple objects can be created from a

class, and each object has its own copy of the
Instance data.

Copyright © 2014 Pearson Education, Inc.

Quick Check

Where Is instance data declared?
What is the scope of instance data?

What Is local data?

Copyright © 2014 Pearson Education, Inc.

Quick Check

Where Is instance data declared?

At the class level.

What is the scope of instance data?

It can be referenced in any method of the class.

What Is local data?

Local data Is declared within a method, and is
only accessible in that method.

Copyright © 2014 Pearson Education, Inc.

Outline

Anatomy of a Class

——> Encapsulation
Anatomy of a Method
Graphical Objects
Graphical User Interfaces

Buttons and Text Fields

Copyright © 2014 Pearson Education, Inc.

Encapsulation

* We can take one of two views of an object:

— Internal - the detalls of the variables and methods of the
class that defines it

— external - the services that an object provides and how
the object interacts with the rest of the system

* From the external view, an object is an
encapsulated entity, providing a set of specific
services

* These services define the interface to the object

Copyright © 2014 Pearson Education, Inc.

Encapsulation

* One object (called the client) may use another
object for the services it provides

* The client of an object may request its services
(call its methods), but it should not have to be
aware of how those services are accomplished

* Any changes to the object's state (its variables)
should be made by that object's methods

* We should make it difficult, if not impossible, for a
client to access an object’s variables directly

« That Is, an object should be self-governing

Copyright © 2014 Pearson Education, Inc.

Encapsulation

* An encapsulated object can be thought of as a black
box -- its inner workings are hidden from the client

* The client invokes the interface methods and they
manage the instance data

Methods

Copyright © 2014 Pearson Education, Inc.

Visibility Modifiers

* |In Java, we accomplish encapsulation through the
appropriate use of visibility modifiers

« A modifier is a Java reserved word that specifies
particular characteristics of a method or data

« We've used the £final modifier to define constants

« Java has three visibility modifiers: public,
protected, and private

 The protected modifier involves inheritance,
which we will discuss later

Copyright © 2014 Pearson Education, Inc.

Visibility Modifiers

 Members of a class that are declared with public
visibility can be referenced anywhere

 Members of a class that are declared with private
visibility can be referenced only within that class

 Members declared without a visibility modifier have
default visibility and can be referenced by any class
In the same package

« An overview of all Java modifiers is presented in
Appendix E

Copyright © 2014 Pearson Education, Inc.

Visibility Modifiers

« Public variables violate encapsulation because they
allow the client to modify the values directly

 Therefore instance variables should not be declared
with public visibility

 |tis acceptable to give a constant public visibility,
which allows it to be used outside of the class

* Public constants do not violate encapsulation
because, although the client can access it, its value
cannot be changed

Copyright © 2014 Pearson Education, Inc.

Visibility Modifiers

« Methods that provide the object's services are
declared with public visibility so that they can be
Invoked by clients

 Public methods are also called service methods

* A method created simply to assist a service method
IS called a support method

e Since a support method is not intended to be called
by a client, it should not be declared with public
visibility

Copyright © 2014 Pearson Education, Inc.

Visibility Modifiers

public private
Variables Violate | Enforce_
encapsulation encapsulation
. . Support other
Methods Prowde_serwces methods in the
to clients
class

Copyright © 2014 Pearson Education, Inc.

Accessors and Mutators

Because instance data is private, a class usually
provides services to access and modify data values

An accessor method returns the current value of a
variable

A mutator method changes the value of a variable

"he names of accessor and mutator methods take
the form getX and setX, respectively, where X is

the name of the value

They are sometimes called “getters” and “setters”

Copyright © 2014 Pearson Education, Inc.

Mutator Restrictions

* The use of mutators gives the class designer the
ability to restrict a client’s options to modify an
object’s state

« A mutator Is often designed so that the values of
variables can be set only within particular limits

* For example, the setFaceValue mutator of the
Die class should restrict the value to the valid
range (1 to MAX)

« We'll see in Chapter 5 how such restrictions can be
Implemented

Copyright © 2014 Pearson Education, Inc.

Quick Check

Why was the faceValue variable declared as
private In the Die class?

Why is it ok to declare MAX as publicinthe Die
class?

Copyright © 2014 Pearson Education, Inc.

Quick Check

Why was the faceValue variable declared as
private In the Die class?

By making it private, each Die object controls its

own data and allows it to be modified only by the
well-defined operations it provides.

Why is it ok to declare MAX as publicinthe Die
class?

MAX IS a constant. Its value cannot be changed.
Therefore, there is no violation of encapsulation.

Copyright © 2014 Pearson Education, Inc.

Outline

Anatomy of a Class
Encapsulation

——> Anatomy of a Method
Graphical Objects
Graphical User Interfaces

Buttons and Text Fields

Copyright © 2014 Pearson Education, Inc.

Method Declarations

Let’'s now examine methods in more detail

A method declaration specifies the code that will be
executed when the method is invoked (called)

When a method is invoked, the flow of control
jumps to the method and executes its code

When complete, the flow returns to the place where
the method was called and continues

The Iinvocation may or may not return a value,
depending on how the method Is defined

Copyright © 2014 Pearson Education, Inc.

Method Control Flow

* If the called method is in the same class, only the
method name is needed

//// compute myMethod ‘\\\\
\ >

myMethod () ;
<

- | /

Copyright © 2014 Pearson Education, Inc.

Method Control Flow

* The called method is often part of another class or
object

-

main

~

v
obj.doIt();

-

doIt

14

>

helpMe () ;

|
|

<

~

helpMe

\

/

Copyright © 2014 Pearson Education, Inc.

Method Header

* A method declaration begins with a method header

char calc(int numl, int num2, String message)

A
I~ —
~—
n:1ea‘t:1c;d parameter list
return The parameter list specifies the type
type and name of each parameter

The name of a parameter in the method
declaration is called a formal parameter

Copyright © 2014 Pearson Education, Inc.

Method Body

 The method header is followed by the method body

char calc(int numl, int num2, String message)

{

int sum = numl + num2;
char result = message.charAt (sum) ;

return result; sum and result

} are local data
‘ They are created
The return expression each time the
must be consistent with method is called, and
the return type are destroyed when

it finishes executing

Copyright © 2014 Pearson Education, Inc.

The return Statement

« The return type of a method indicates the type of
value that the method sends back to the calling
location

A method that does not return a value has a void
return type

* A return statement specifies the value that will be
returned

return expression;

* |ts expression must conform to the return type

Copyright © 2014 Pearson Education, Inc.

Parameters

 When a method is called, the actual parameters In
the invocation are copied into the formal parameters
In the method header

ch = obj.calc (25, count, "Hello");
| L l
v v v

char calc(int numl, int num2, String message)

{

int sum = numl + num2;
char result = message.charAt (sum) ;

return result;

Copyright © 2014 Pearson Education, Inc.

Local Data

« As we’ve seen, local variables can be declared
Inside a method

« The formal parameters of a method create
automatic local variables when the method is
Invoked

 When the method finishes, all local variables are
destroyed (including the formal parameters)

« Keep in mind that instance variables, declared at
the class level, exists as long as the object exists

Copyright © 2014 Pearson Education, Inc.

Bank Account Example

« Let's look at another example that demonstrates
the implementation details of classes and methods

 We'll represent a bank account by a class named
Account

* |t's state can include the account number, the
current balance, and the name of the owner

* An account’s behaviors (or services) include
deposits and withdrawals, and adding interest

Copyright © 2014 Pearson Education, Inc.

Driver Programs

* A driver program drives the use of other, more
Interesting parts of a program

* Driver programs are often used to test other parts
of the software

* The Transactions class contains a main method
that drives the use of the Account class,
exercising Iits services

e See Transactions. java
e See Account.java

Copyright © 2014 Pearson Education, Inc.

//**

// Transactions.java Author: Lewis/Loftus
//

// Demonstrates the creation and use of multiple Account objects.
//**

public class Transactions

{

public static void main(String[] args)

{

Account acctl new Account ("Ted Murphy", 72354, 102.56)
Account acct2 new Account("Jane Smith", 69713, 40.00);
Account acct3 = new Account ("Edward Demsey", 93757, 759.32);

acctl.deposit (25.85) ;
double smithBalance = acct2.deposit(500.00);
System.out.println("Smith balance after deposit: " +

smithBalance) ;

continue

Copyright © 2014 Pearson Education, Inc.

continue

System.out.println("Smith balance after withdrawal: " +
acct2.withdraw (430.75, 1.50));

acctl.addInterest() ;
acct2.addInterest() ;
acct3.addInterest() ;

System.
System.
System.
System.

out.println() ;

out.println(acctl) ;
out.println (acct2) ;
out.println (acct3);

Copyright © 2014 Pearson Education, Inc.

continue
System.
acctl.

acct2.
acct3.

m m m

Output

Smith balance after deposit: 540.0

Smith balance after withdrawal:
72354 Ted Murphy $132.90
69713 Jane Smith $111.52

93757 Edward Demsey $785.90

107.55 |*

System.
System.
System.
System.

out.println() ;

out.println(acctl) ;
out.println (acct2) ;
out.println (acct3);

Copyright © 2014 Pearson Education, Inc.

//**

// Account.java Author: Lewis/Loftus
//
// Represents a bank account with basic services such as deposit

// and withdraw.
//**

import java.text.NumberFormat;

public class Account

{
private final double RATE = 0.035; // interest rate of 3.5%

private long acctNumber;
private double balance;
private String name;

// Sets up the account by defining its owner, account number,
// and initial balance.

public Account (String owner, long account, double initial)

{

name = owner;
acctNumber = account;
balance = initial;

continue

L Inc.

continue

// Deposits the specified amount into the account. Returns the
// new balance.

public double deposit(double amount)
{

balance = balance + amount;
return balance;

// Withdraws the specified amount from the account and applies
// the fee. Returns the new balance.

public double withdraw(double amount, double fee)
{

balance = balance - amount - fee;
return balance;

continue

Copyright © 2014 Pearson Education, Inc.

continue

public double addInterest()

{
balance += (balance * RATE) ;

return balance;

public double getBalance ()
{

return balance;

public String toString()
{
NumberFormat fmt = NumberFormat.getCurrencyInstance() ;
return (acctNumber + "\t" + name + "\t" + fmt.format(balance)) ;

Copyright © 2014 Pearson Education, Inc.

Bank Account Example

~

acctl " acctNumber | 72354

balance [102.56

name >["Ted Murphy"]

_)

A 4

acct2 acctNumber | 69713

balance | 40.00

name =["Jane Smith"]

-)

Copyright © 2014 Pearson Education, Inc.

Bank Account Example

* There are some improvements that can be made to
the Account class

« Formal getters and setters could have been defined
for all data

* The design of some methods could also be more
robust, such as verifying that the amount
parameter to the withdraw method Is positive

Copyright © 2014 Pearson Education, Inc.

Constructors Revisited

* Note that a constructor has no return type specified
In the method header, not even void

« A common error is to put a return type on a
constructor, which makes it a “regular” method that
happens to have the same name as the class

* The programmer does not have to define a
constructor for a class

« Each class has a default constructor that accepts
no parameters

Copyright © 2014 Pearson Education, Inc.

Quick Check

How do we express which Account object's balance
IS updated when a deposit is made?

Copyright © 2014 Pearson Education, Inc.

Quick Check

How do we express which Account object's balance
IS updated when a deposit is made?

Each account is referenced by an object
reference variable:

Account myAcct = new Account(..);

and when a method is called, you call it through
a particular object:

myAcct.deposit (50) ;

Copyright © 2014 Pearson Education, Inc.

Outline

Anatomy of a Class

Encapsulation

Anatomy of a Method
> Graphical Objects

Graphical User Interfaces

Buttons and Text Fields

Copyright © 2014 Pearson Education, Inc.

Graphical Objects

Some objects contain information that determines
how the object should be represented visually

Most GUI components are graphical objects

We can have some effect on how components get
drawn

We did this in Chapter 2 when we defined the
paint method of an applet

Let's look at some other examples of graphical
objects

Copyright © 2014 Pearson Education, Inc.

Smiling Face Example

The SmilingFace program draws a face by
defining the paintComponent method of a panel

See SmilingFace.java
See SmilingFacePanel.java

The main method of the SmilingFace class
Instantiates a SmilingFacePanel and displays it

The SmilingFacePanel class is derived from the
JPanel class using inheritance

Copyright © 2014 Pearson Education, Inc.

//**
// SmilingFace.java Author: Lewis/Loftus
//
// Demonstrates the use of a separate panel class.
//**
import javax.swing.JFrame;
public class SmilingFace
{
/== m e e e e
// Creates the main frame of the program.
/== m e e e e
public static void main (String[] args)
{
JFrame frame = new JFrame ("Smiling Face") ;
frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
SmilingFacePanel panel = new SmilingFacePanel () ;
frame.getContentPane () .add (panel) ;
frame.pack() ;
frame.setVisible (true) ;
}
}

Copyright © 2014 Pearson Education, Inc.

//************

// SmilingFac
//

// Demonstrat
//************

import javax.s

public class S

{

public stat

kkkkkhkkkkkkk*kx

an00o

Smiling Face

Always remember that you are unique!

kkkkkhkkkkkkk*kx

& @
e
-

Just like everyone else.

{

JFrame frame
frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;

SmilingFacePanel panel = new SmilingFacePanel () ;
frame.getContentPane () .add (panel) ;

frame.pack() ;
frame.setVisible (true) ;

= new JFrame ("Smiling Face");

Copyright © 2014 Pearson Education, Inc.

//**

// SmilingFacePanel.java Author: Lewis/Loftus

//

// Demonstrates the use of a separate panel class.
//**

import javax.swing.JPanel;
import java.awt.*;

public class SmilingFacePanel extends JPanel

{
private final int BASEX = 120, BASEY = 60; // base point for head

// Constructor: Sets up the main characteristics of this panel.

public SmilingFacePanel ()

{
setBackground (Color.blue) ;
setPreferredSize (new Dimension (320, 200));
setFont (new Font ("Arial", Font.BOLD, 16));
}
continue

Copyright © 2014 Pearson Education, Inc.

continue

public void paintComponent (Graphics page)

{

super .paintComponent (page) ;

page.
.filloval (BASEX, BASEY, 80, 80); // head

page

page.

page.
.drawOval (BASEX+20, BASEY+30, 15, 7); // eyes
.drawOval (BASEX+45, BASEY+30, 15, 7);

page
page

page.
page.

page
page

page
page

continue

.drawArc (BASEX+20, BASEY+25, 15, 7, 0, 180); // eyebrows
.drawArc (BASEX+45, BASEY+25, 15, 7, 0, 180);

.drawArc (BASEX+35, BASEY+40, 15, 10, 180, 180); // nose
.drawArc (BASEX+20, BASEY+50, 40, 15, 180, 180); // mouth

setColor (Color.yellow) ;
filloval (BASEX-5, BASEY+20, 90, 40); // ears

setColor (Color.black) ;

filloval (BASEX+25, BASEY+31, 5, 5); // pupils
fillOval (BASEX+50, BASEY+31, 5, 5);

Copyright © 2014 Pearson Education, Inc.

continue

page.setColor (Color.white) ;

page.drawString ("Always remember that you are unique!",
BASEX-105, BASEY-15);

page.drawString ("Just like everyone else.", BASEX-45, BASEY+105) ;

Copyright © 2014 Pearson Education, Inc.

Smiling Face Example

Every Swing component has a paintComponent
method

The paintComponent method accepts a
Graphics object that represents the graphics

context for the panel

We define the paintComponent method to draw
the face with appropriate calls to the Graphics
methods

Note the difference between drawing on a panel
and adding other GUI components to a panel

Copyright © 2014 Pearson Education, Inc.

Splat Example

The Splat example is structured a bit differently

It draws a set of colored circles on a panel, but each
circle is represented as a separate object that
maintains its own graphical information

The paintComponent method of the panel "asks"
each circle to draw itself

See Splat.java
See SplatPanel. java
See Circle.java

Copyright © 2014 Pearson Education, Inc.

//**

// Splat.java Author: Lewis/Loftus
//

// Demonstrates the use of graphical objects.
//**

import javax.swing.*;
import java.awt.¥*;

public class Splat
{

public static void main (String[] args)

{

JFrame frame = new JFrame ("Splat")
frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;

frame.getContentPane () .add (new SplatPanel()) ;

frame.pack() ;
frame.setVisible (true) ;

Copyright © 2014 Pearson Education, Inc.

//************i Fﬁ;ﬂnfﬁ SDMI kkkkkkkkkkkkk

// Splat.java
//

// Demonstratse

//************i khkkkkkkkkkkkkx

import javax.sy
import java.awt

public class Sg
{

public static void main(String[] args)

{

JFrame frame = new JFrame ("Splat");
frame.setDefaultCloseOperation (JFrame.EXIT ON_CLOSE) ;

frame.getContentPane () .add (new SplatPanel()) ;

frame.pack() ;
frame.setVisible (true) ;

Copyright © 2014 Pearson Education, Inc.

//**

// SplatPanel.java Author: Lewis/Loftus
//

// Demonstrates the use of graphical objects.
//**

import javax.swing.*;
import java.awt.*;

public class SplatPanel extends JPanel
{

private Circle circlel, circle2, circle3, circle4, circle5;

// Constructor: Creates five Circle objects.

public SplatPanel ()
{

circlel = new Circle (30, Color.red, 70, 35);

circle2 = new Circle (50, Color.green, 30, 20);
circle3 = new Circle (100, Color.cyan, 60, 85);
circle4 = new Circle (45, Color.yellow, 170, 30);

circle5 = new Circle (60, Color.blue, 200, 60);

setPreferredSize (new Dimension (300, 200));
setBackground (Color.black) ;

continue

L Inc.

continue

public void paintComponent (Graphics page)
{

super.paintComponent (page) ;

circlel.draw(page) ;
circle2.draw(page) ;
circle3.draw(page) ;
circled.draw(page) ;
circle5.draw(page) ;

Copyright © 2014 Pearson Education, Inc.

//**

// Circle.java Author: Lewis/Loftus
//

// Represents a circle with a particular position, size, and color.
//**

import java.awt.¥*;

public class Circle

{
private int diameter, x, y;
private Color color;
/[=== = e
// Constructor: Sets up this circle with the specified values.
[=== = e e
public Circle(int size, Color shade, int upperX, int upperY)
{
diameter = size;
color = shade;
X = upperX;
Yy = upperyY;
}
continue

Copyright © 2014 Pearson Education, Inc.

continue

/[== == o
// Draws this circle in the specified graphics context.
et
public void draw(Graphics page)
{

page.setColor (color) ;

page.fillOval (x, y, diameter, diameter)
}
/[=== = = e

public void setDiameter (int size)

{

diameter = size;

public void setColor (Color shade)

{

color = shade;

}

continue

Copyright © 2014 Pearson Education, Inc.

continue

e
// X mutator.
e e
public void setX(int upperX)
{

X = upperX;
}
/[=== = = e
// Y mutator.
/[=== = = e
public void setY(int upperY)
{

y = upperyY;
}
/[=== = e e
// Diameter accessor.
e
public int getDiameter ()
{

return diameter;
}

continue

Copyright © 2014 Pearson Education, Inc.

continue
/[== == oo
// Color accessor.
/== == e o
public Color getColor()
{
return color;
}
/[== == oo
// X accessor.
/[== == e oo
public int getX()
{
return x;
}
/[=== e
// Y accessor.
e
public int getY¥ ()
{
return y;
}
}

Copyright © 2014 Pearson Education, Inc.

Outline

Anatomy of a Class
Encapsulation
Anatomy of a Method
Graphical Objects

——> Graphical User Interfaces

Buttons and Text Fields

Copyright © 2014 Pearson Education, Inc.

Graphical User Interfaces

« A Graphical User Interface (GUI) in Java Is created
with at least three kinds of objects:

— components, events, and listeners

* We've previously discussed components, which are
objects that represent screen elements:

— labels, buttons, text fields, menus, etc.

« Some components are containers that hold and
organize other components:

— frames, panels, applets, dialog boxes

Copyright © 2014 Pearson Education, Inc.

Events

* An event is an object that represents some activity
to which we may want to respond

* For example, we may want our program to perform
some action when the following occurs:

— the mouse is moved

— the mouse is dragged

— a mouse button is clicked

— a graphical button is pressed
— a keyboard key is pressed

— a timer expires

Copyright © 2014 Pearson Education, Inc.

Events and Listeners

« The Java API contains several classes that
represent typical events

« Components, such as a graphical button, generate
(or fire) an event when it occurs

* We set up a listener object to respond to an event
when it occurs

* We can design listener objects to take whatever
actions are appropriate when an event occurs

Copyright © 2014 Pearson Education, Inc.

Events and Listeners

Event
>
Component Listener
A component object A corresponding listener
generates an event object is designed to

respond to the event

When the event occurs, the component calls
the appropriate method of the listener,
passing an object that describes the event

Copyright © 2014 Pearson Education, Inc.

GUI Development

* To create a Java program that uses a GUIl we
MUust:

— Instantiate and set up the necessary components

— Implement listener classes for any events we
care about

— establish the relationship between listeners and
the components that generate the corresponding
events

* Let's now explore some new components and see
how this all comes together

Copyright © 2014 Pearson Education, Inc.

Outline

Anatomy of a Class
Encapsulation

Anatomy of a Method
Graphical Objects
Graphical User Interfaces

> Buttons and Text Fields

Copyright © 2014 Pearson Education, Inc.

Buttons
* A push button is defined by the JButton class

* It generates an action event

The PushCounter example displays a push button
that increments a counter each time it is pushed

See PushCounter. java

See PushCounterPanel. java

Copyright © 2014 Pearson Education, Inc.

//**

// PushCounter.java Authors: Lewis/Loftus

//

// Demonstrates a graphical user interface and an event listener.
//**

import javax.swing.JFrame;

public class PushCounter

{

public static void main(String[] args)

{

JFrame frame = new JFrame ("Push Counter") ;
frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;

frame.getContentPane () .add (new PushCounterPanel()) ;

frame.pack() ;
frame.setVisible (true) ;

Copyright © 2014 Pearson Education, Inc.

;;************ H I,u-hll n Fl.lfl-h Enunter khkkkhkhkkhkkkkkkkik
PushCounte

// | Push Me! | Pushes: 7
// Demonstrat listener.
//************ khkkkhkhkkhkkkkkkkik

import javax.swing.JFrame;

public class PushCounter

{

public static void main(String[] args)

{

JFrame frame = new JFrame ("Push Counter") ;
frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;

frame.getContentPane () .add (new PushCounterPanel()) ;

frame.pack() ;
frame.setVisible (true) ;

Copyright © 2014 Pearson Education, Inc.

//**

// PushCounterPanel.java Authors: Lewis/Loftus

//

// Demonstrates a graphical user interface and an event listener.
//**

import java.awt.¥*;
import java.awt.event.*;
import javax.swing.*;

public class PushCounterPanel extends JPanel

{

private int count;
private JButton push;
private JLabel label;

// Constructor: Sets up the GUI.
public PushCounterPanel ()
{

count = 0;

push = new JButton("Push Me!");
push.addActionlListener (new ButtonListener()) ;

continue

Copyright © 2014 Pearson Education, Inc.

continue

label = new JLabel ("Pushes: " + count);

add (push) ;
add (label) ;

setPreferredSize (new Dimension (300, 40));
setBackground (Color.cyan) ;

}

//***

// Represents a listener for button push (action) events.
//***

private class ButtonlListener implements ActionListener

{
/== mm e e
// Updates the counter and label when the button is pushed.
/=== e e e
public void actionPerformed (ActionEvent event)
{
count++;
label.setText ("Pushes: " + count);
}
}

Copyright © 2014 Pearson Education, Inc.

Push Counter Example

The components of the GUI are the button, a label
to display the counter, a panel to organize the
components, and the main frame

The PushCounterPanel class represents the
panel used to display the button and label

The PushCounterPanel class is derived from
JPanel using inheritance

The constructor of PushCounterPanel Sets up
the elements of the GUI and initializes the counter
to zero

Copyright © 2014 Pearson Education, Inc.

Push Counter Example

 The ButtonListener class is the listener for the
action event generated by the button

 Itis implemented as an inner class, which means it
Is defined within the body of another class

 That facilitates the communication between the
listener and the GUI components

* Inner classes should only be used in situations
where there Is an intimate relationship between the
two classes and the inner class is not needed Iin any
other context

Copyright © 2014 Pearson Education, Inc.

Push Counter Example

Listener classes are written by implementing a
listener interface

The ButtonListener class implements the
ActionListener Interface

An Interface Is a list of methods that the
Implementing class must define

The only method in the ActionListener interface
IS the actionPerformed method

The Java API contains interfaces for many types of
events

We discuss interfaces in more detail in Chapter 6

Copyright © 2014 Pearson Education, Inc.

Push Counter Example
e The PushCounterPanel constructor:
— Instantiates the ButtonListener object

— establishes the relationship between the button and the
listener by the call to addActionListener

* When the user presses the button, the button
component creates an ActionEvent object and
calls the actionPerformed method of the listener

e The actionPerformed method increments the
counter and resets the text of the label

Copyright © 2014 Pearson Education, Inc.

Quick Check

Which object in the Push Counter example generated
the event?

What did 1t do then?

Copyright © 2014 Pearson Education, Inc.

Quick Check

Which object in the Push Counter example generated
the event?

The button component generated the event.
What did it do then?

It called the actionPerformed method of the
listener object that had been registered with it.

Copyright © 2014 Pearson Education, Inc.

Text Fields

Let's look at another GUI example that uses
another type of component

A text field allows the user to enter one line of input

If the cursor is Iin the text field, the text field object
generates an action event when the enter key Is
pressed

See Fahrenheit. java
See FahrenheitPanel. java

Copyright © 2014 Pearson Education, Inc.

//**

// Fahrenheit.java Author: Lewis/Loftus
//

// Demonstrates the use of text fields.
//**

import javax.swing.JFrame;

public class Fahrenheit

{

public static void main(String[] args)

{

JFrame frame = new JFrame ("Fahrenheit") ;
frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;

FahrenheitPanel panel = new FahrenheitPanel()
frame.getContentPane () .add (panel) ;

frame.pack() ;
frame.setVisible (true) ;

Copyright © 2014 Pearson Education, Inc.

//************ kkkkhkkkkkhkhkkkkk

m™ .
// Fahrenheit 8 O Fahrenheit

// Enter Fahrenheit temperature: 74
// Demonstrat
[[%K KKKk Kk Kk Temperature in Celsius: 23 e 3 % % % K Kk Kk Kk kkkkk

import javax.s

public class Fahrenheit

{

public static void main(String[] args)

{

JFrame frame = new JFrame ("Fahrenheit") ;
frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;

FahrenheitPanel panel = new FahrenheitPanel()
frame.getContentPane () .add (panel) ;

frame.pack() ;
frame.setVisible (true) ;

Copyright © 2014 Pearson Education, Inc.

//**

// FahrenheitPanel.java Author: Lewis/Loftus
//

// Demonstrates the use of text fields.
//**

import java.awt.¥*;
import java.awt.event.*;
import javax.swing.*;

public class FahrenheitPanel extends JPanel

{
private JLabel inputLabel, outputlabel, resultLabel;
private JTextField fahrenheit;

/=== == e
// Constructor: Sets up the main GUI components.

/=== = e
public FahrenheitPanel ()

{

inputLabel = new JLabel ("Enter Fahrenheit temperature:");
outputLabel = new JLabel ("Temperature in Celsius: ") ;
resultLabel = new JLabel ("---");

fahrenheit = new JTextField(5)
fahrenheit.addActionListener (new TempListener()) ;

continue

Copyright © 2014 Pearson Education, Inc.

continue

add (inputLabel) ;
add (fahrenheit) ;
add (outputLabel) ;
add (resultLabel) ;

setPreferredSize (new Dimension (300, 75));
setBackground (Color.yellow) ;

}

//***

// Represents an action listener for the temperature input field.
AR L T T e e Ly

private class TemplListener implements ActionListener

{

// Performs the conversion when the enter key is pressed in
// the text field.

public void actionPerformed (ActionEvent event)
{

int fahrenheitTemp, celsiusTemp;

String text = fahrenheit.getText() ;

continue

Copyright © 2014 Pearson Education, Inc.

continue

fahrenheitTemp = Integer.parselnt(text);
celsiusTemp = (fahrenheitTemp-32) * 5/9;

resultlLabel.setText (Integer.toString(celsiusTemp)) ;

Copyright © 2014 Pearson Education, Inc.

Fahrenheit Example

* Like the PushCounter example, the GUI is set up
In a separate panel class

 The TempListener Inner class defines the listener
for the action event generated by the text field

e The FahrenheitPanel constructor instantiates
the listener and adds it to the text field

* When the user types a temperature and presses
enter, the text field generates the action event and
calls the actionPerformed method of the listener

Copyright © 2014 Pearson Education, Inc.

Summary

e Chapter 4 focused on:

— class definitions

— Instance data

— encapsulation and Java modifiers

— method declaration and parameter passing
— constructors

— graphical objects

— events and listeners

— buttons and text fields

Copyright © 2014 Pearson Education, Inc.

