College Prep Stats Review for Test Chapter 5

Part I: Determine whether the following is a probability distribution. Answer Y for "Yes", N for "No". Use the following A) ~ D) for your reason(s). The reason(s) could be used more than once and each question could have more than one reason.

A`	The '	probabilities	add up	equal to	1 or	close eno	ugh to	1.

- B) The probabilities add to less than one or greater than one or not close enough to one.
- C) Each individual probability is not a number between 0 and 1 inclusive.

 D) There is not enough information to determine whether it is a probability distribution

ט) דוונ	ere is not e	mough imorm	lation to determine whether it is a probability distribution.		
1.)	Х	P(x)			
	1	0.200	1		
	2	0.037			
	3	0.184	Reason:		
	4	0.446			
	5	0.133			
2.)	X	P(x)			
	1	0.204	2		_
	2	0.301			
	3	0.507	Reason:		
	4	-0.033			
	5	0.021			
3.)					
	X	P(x)			
	1	0.290	3		
	2	0.218			
	3	0.047	Reason:		
	4	0.033			
	5	0.416			
Poisso	n probabi	ility distribut	the given problem fits the requirements of a Binomial probation (P), or neither (N).	ability distribution (B), 4.	
4.) Ko	lling a sing	gie die 57 time	es and keeping track of the numbers that are rolled.	4	_
5.) Ro	lling a sing	gle die 47 time	es and keeping track of the "fives" rolled.	5	
			s sold by the Westphil car dealer is 3 cars ty that exactly 4 cars will be sold tomorrow?	6	
			the events are discrete (D) or continuous (C). omly selected day.	7	
8.) Th	e number	of softball bat	ts Mr. Smith owns.	8.	

9.) The cost of a randomly selected cell phone.	9
Part IV: Short Answer. This includes probability statements and calculator commands.	

10.) You pay \$15 to enter a raffle in which you have a 0.03 chance of winning
\$2,000. If you play this game once every day, find the expected value and
the probability of winning exactly once in 365 days.

10. <i>E</i> =	
<i>P</i> (1) =	

11.) Focus groups of 13 people are randomly selected to discuss
products of the Yummy Company. It is determined that the mean
number (per group) who recognize the Yummy brand name is 8.4,
and the standard deviation is 0.97. Would it be unusual to randomly
selected 13 people and find that fewer than 5 recognize the Yummy
brand name?

11.Low_	
Upper	
Usual	Unusual

12.) The number of golf balls ordered by customers of a pro shop has the following distribution. Find the mean and standard deviation for this distribution.

X	P(x)
0	0.0296
1	0.3456
2	0.4254
3	0.1386
4	0.0608

12. μ	=			
•				

$$\sigma =$$

13.) The probability that a box of 4 desk phone will contain 0, 1, 2, 3, 4 defective ones are 0.5896, 0.2665, 0.0964, 0.0388, and 0.0087, respectively. Find the μ and σ of this distribution.

13. <i>μ</i> =			
σ –			

X	P(x)
0	0.5896
1	0.2665
2	0.0964
3	0.0388
4	0.0087

14.) In a game, you pay \$6 to play and win \$110. If you have a 1/25 probability of winning and a 24/25 probability of losing, what is the expected value of your profit?

	f people are left handed. If 20 people what is the probability that exactly 2		15
in 6 total births? Assume	ity of having at least three baby boys that male and female births are e births are independent events.		16
full time. Find the average	ge survey, 27% of all students work ge and standard deviation for the number lift time in a sample size of 25 students.	er	17. <i>μ</i> =
	edure result in a binomial distribution? ing track of the numbers that are rolled	_	18
a) Not binomial: there arc) Not binomial: there ar	e more than two outcomes for each tria e too many trials.	*	l: the trials are not independent. sults in a binomial distribution.
19.) Find the minimum when $n = 1056$ and $p = 0$	usual value and the maximum usual val 0.80	ue	19
a) Minimum: 826.42; max c) Minimum: 818.8; max		b) Minimum: 831.8; ma d) Minimum: 870.8; ma	
not be considered a binor	eplacement involves dependent events, s mial experiment. Explain the circumsta replacement could be considered indep	ances under	20
a) $n > 0.05N$	b) $n \le 0.05N$	c) $n \ge 0.05N$	d) $n = 0.05N$

21.) Does the given procedure result in a binomial distribution? Ro	lling a
single die 47 times, keeping track of the "fives" rolled.	

21.	

- a) Not binomial: the trials are not independent.c) Not binomial: there are more than two outcomes for each trial.
- b) Not binomial: there are too many trials.d) Procedure results in a binomial distribution.