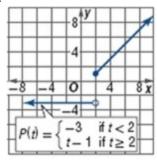
Use the graph of each function to estimate the indicated function values. Then confirm the estimate algebraically. Round to the nearest hundredth, if necessary.

4.

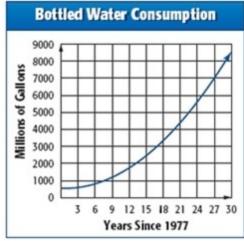


- **a.** *P*(-6)
- **b.** *P*(2)
- **c.** *P*(9)

ANSWER:

- **a.** −3
- **b.** 1
- **c**. 8

- 8. WATER Bottled water consumption from 1977 to 2006 can be modeled using
 - $f(x) = 9.35x^2 12.7x + 541.7$, where x represents the number of years since 1977.

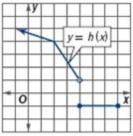


- **a.** Use the graph to estimate the amount of bottled water consumed in 1994.
- **b**. Find the 1994 consumption numerically. Round to the nearest ten million gallons.
- c. Use the graph to estimate when water consumption was 6 billion gallons. Confirm numerically.

ANSWER:

- **a.** 3 billion gallons
- **b.** 3.03 billion gallons
- **c.** about 2002 or x = 25; $f(24) = 9.35(24)^2 12.7(24) + 541.7 \approx 5623$; $f(26) = 9.35(26)^2 12.7(26) + 541.7 \approx 6532$

Use the graph of h to find the domain and range of each function.

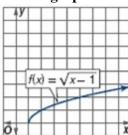


12.

ANSWER:

$$D = (-\infty, 7], R = [-1] \cup (1, \infty)$$

Use the graph of each function to find its y-intercept and zero(s). Then find these values algebraically.



16

ANSWER:

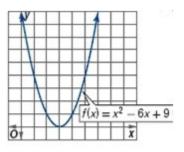
no y-intercept; zero: 1;

$$\sqrt{x-1}=0$$

$$\left(\sqrt{x-1}\right)^2 = \left(0\right)^2$$

$$x - 1 = 0$$

$$x = 1$$



20.

ANSWER:

y-intercept: 9; zero: 3;

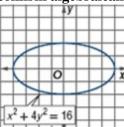
$$x^2 - 6x + 9 = 0$$

$$(x-3)^2 = 0$$

$$x - 3 = 0$$

$$x = 3$$

Use the graph of each equation to test for symmetry with respect to the x-axis, y-axis, and the origin. Support the answer numerically. Then confirm algebraically.



24

ANSWER:

x-axis, *y*-axis, and origin;

x	у	(x, y)
1	$\frac{\sqrt{15}}{2}$	$\left(1, \frac{\sqrt{15}}{2}\right)$
1	$-\frac{\sqrt{15}}{2}$	$\left(1, -\frac{\sqrt{15}}{2}\right)$
2	$\sqrt{3}$	(2, √3)
2	$-\sqrt{3}$	$(2, -\sqrt{3})$
3	$\frac{\sqrt{7}}{2}$	$\left(3, \frac{\sqrt{7}}{2}\right)$
3	$-\frac{\sqrt{7}}{2}$	$\left(3, -\frac{\sqrt{7}}{2}\right)$

Because $x^2 + 4(-y)^2 = 16$ is equivalent to $x^2 + 4y^2 = 16$, the graph is symmetric with respect to the x-axis.

x	у	(x, y)
-3	$\frac{\sqrt{7}}{2}$	$\left(-3, \frac{\sqrt{7}}{2}\right)$
-2	$\sqrt{3}$	(−2, √3)
-1	$\frac{\sqrt{15}}{2}$	$\left(-1, \frac{\sqrt{15}}{2}\right)$
1	$\frac{\sqrt{15}}{2}$	$\left(1, \frac{\sqrt{15}}{2}\right)$
2	$\sqrt{3}$	(2, √3)
3	$\frac{\sqrt{7}}{2}$	$\left(3, \frac{\sqrt{7}}{2}\right)$

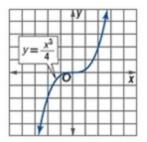
Because $(-x)^2 + 4y^2 = 16$ is equivalent to $x^2 + 4y^2 = 16$, the graph is symmetric with respect to the y-axis.

eSolutions Manual - Powered by Cognero

x	у	(x, y)
0	-2	(0, -2)
-3	$-\frac{\sqrt{7}}{2}$	$\left(-3, -\frac{\sqrt{7}}{2}\right)$
-2	$-\sqrt{3}$	$(-2, -\sqrt{3})$
2	$\sqrt{3}$	(2, √3)
3	$\frac{\sqrt{7}}{2}$	$\left(3, \frac{\sqrt{7}}{2}\right)$
0	2	(-0, 2)

Because $(-x)^2 + 4(-y)^2 = 16$ is equivalent to $x^2 + 4y^2 = 16$, the graph is symmetric with respect to the origin.

eSolutions Manual - Powered by Cognero
Page 6



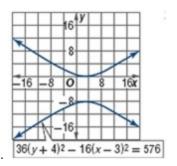
28

ANSWER:

origin;

x	у	(x, y)
-4	-16	(-4, -16)
-2	-2	(-2, -2)
-1	$-\frac{1}{4}$	$(-1, -\frac{1}{4})$
1	1/4	$\left(1,\frac{1}{4}\right)$
2	2	(2, 2)
4	16	(4, 16)

Because $-y = \frac{(-x)^3}{4}$ is equivalent to $y = \frac{x^3}{4}$, the graph is symmetric with respect to the origin.



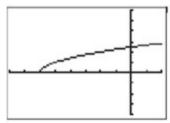
ANSWER:

none

GRAPHING CALCULATOR Graph each function. Analyze the graph to determine whether each function is *even*, *odd*, or *neither*. Confirm algebraically. If odd or even, describe the symmetry of the graph of the function.

36.
$$g(x) = \sqrt{x+6}$$

ANSWER:



[-8, 2] scl: 1 by [-4, 6] scl: 1

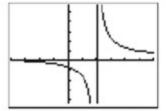
neither;

$$g(-x) = \sqrt{-x+6}$$

$$-g(x) = -\sqrt{x+6}$$

$$40.f(x) = \frac{x+4}{x-2}$$

ANSWER:

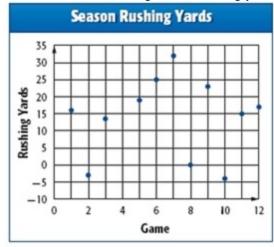


[-4, 6] scl: 1 by [-13, 17] scl: 31 neither;

$$f(-x) = \frac{-x+4}{-x-2}$$

$$-f(x) = -\left(\frac{x+4}{x-2}\right)$$
$$-f(x) = \frac{-x-4}{-x+2}$$

44. **FOOTBALL** A running back's rushing yards for each game in a season are shown.



- **a.** State the domain and range of the relation.
- **b.** In what game did the player rush for no yards?

ANSWER:

- **a.** $D = \{1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12\}$
- $R = \{16, -3, 13, 19, 25, 32, 0, 23, -4, 15, 17\}$
- **b.** Game 8

eSolutions Manual - Powered by Cognero