1-3 Continuity, End Behavior, and Limits

Determine whether each function is continuous at the given x-value(s). Justify using the continuity test. If discontinuous, identify the type of discontinuity as infinite, jump, or removable.

$$1.f(x) = \sqrt{x^2 - 4}$$
; at $x = -5$

ANSWER:

Continuous; $f(-5) = \sqrt{21} \approx 4.58$, $\lim_{x \to -5} f(x) \approx 4.58$, and $\lim_{x \to -5} f(x) = f(-5)$.

$$2.f(x) = \sqrt{x+5}$$
; at $x = 8$

ANSWER:

Continuous; $f(8) = \sqrt{13}$ or about 3.606, $\lim_{x \to 8} f(x) \approx 3.606$, and $\lim_{x \to 8} f(x) = f(8)$.

3.
$$h(x) = \frac{x^2 - 36}{x + 6}$$
; at $x = -6$ and $x = 6$

ANSWER:

Discontinuous at x = -6; h(-6) is undefined and $\lim_{x \to -6} h(x) = -12$, so h(x) has a removable discontinuity at x = -6.

Continuous at x = 6. h(6) = 0, $\lim_{x \to 6} h(x) = 0$, and $\lim_{x \to 6} h(x) = h(6)$.

4.
$$h(x) = \frac{x^2 - 25}{x + 5}$$
; at $x = -5$ and $x = 5$

ANSWER:

Discontinuous at x = -5; h(-5) is undefined and $\lim_{x \to -5} h(x) = -10$, so h(x) has a removable discontinuity at x = -5.

Continuous at x = 5. h(5) = 0, $\lim_{x \to 5} h(x) = 0$, and $\lim_{x \to 5} h(x) = h(5)$.

5.
$$g(x) = \frac{x}{x-1}$$
; at $x = 1$

ANSWER:

Discontinuous; g(1) is undefined and g(x) approaches $-\infty$ as x approaches 1 from the left and ∞ as x approaches 1 from the right, so g(x) has an infinite discontinuity at x = 1.

6.
$$g(x) = \frac{2-x}{2+x}$$
; at $x = 2$ and $x = -2$

ANSWER:

Discontinuous at x = -2; g(-2) is undefined and g(x) approaches $-\infty$ as x approaches -2 from the left and ∞ as x approaches -2 from the right, so g(x) has an infinite discontinuity at x = -2. Continuous at x = 2; g(2) = 0, $\lim_{x \to 2} g(x) = 0$, and $\lim_{x \to 2} g(x) = g(2)$.

1-3 Continuity, End Behavior, and Limits

7.
$$h(x) = \frac{x-4}{x^2-5x+4}$$
; at $x = 1$ and $x = 4$

ANSWER:

Discontinuous at x = 1; h(1) is undefined and h(x) approaches $-\infty$ as x approaches 1 from the left and ∞ as x approaches 1 from the right, so h(x) has an infinite discontinuity at x = 1. Discontinuous at x = 4; h(4) is undefined and $\lim_{x \to 4} h(x) = \frac{1}{3}$, so h(x) has a removable discontinuity at x = 4.

8.
$$h(x) = \frac{x(x-6)}{x^3}$$
; at $x = 0$ and $x = 6$

ANSWER:

Discontinuous at x = 0; h(0) is undefined and h(x) approaches $-\infty$ as x approaches 0 from both sides, so h(x) has an infinite discontinuity at x = 0. Continuous at x = 6; h(6) = 0, $\lim_{x \to 0} h(x) = 0$, and $\lim_{x \to 0} h(x) = h(6)$.

9.
$$f(x) = \begin{cases} 4x - 1 & \text{if } x \le -6 \\ -x + 2 & \text{if } x > -6 \end{cases}$$
; at $x = -6$

ANSWER:

Discontinuous at x = -6; f(x) approaches -25 as x approaches -6 from the left and 8 as x approaches -6 from the right, so f(x) has a jump discontinuity at x = -6.

10.
$$f(x) = \begin{cases} x^2 - 1 & \text{if } x > -2 \\ x - 5 & \text{if } x \le -2 \end{cases}$$
; at $x = -2$

ANSWER:

Discontinuous at x = -2; f(x) approaches -7 as x approaches -2 from the left and 3 as x approaches -2 from the right, so f(x) has a jump discontinuity at x = -2.