Determine whether each function is continuous at the given x-value(s). Justify using the continuity test. If discontinuous, identify the type of discontinuity as infinite, jump, or removable.

$$2.f(x) = \sqrt{x+5}$$
; at $x = 8$

ANSWER:

Continuous; $f(8) = \sqrt{13}$ or about 3.606, $\lim_{x \to 8} f(x) \approx 3.606$, and $\lim_{x \to 8} f(x) = f(8)$.

4.
$$h(x) = \frac{x^2 - 25}{x + 5}$$
; at $x = -5$ and $x = 5$

ANSWER:

Discontinuous at x = -5; h(-5) is undefined and $\lim_{x \to -5} h(x) = -10$, so h(x) has a removable discontinuity at x = -5. Continuous at x = 5. h(5) = 0, $\lim_{x \to 5} h(x) = 0$, and $\lim_{x \to 5} h(x) = h(5)$.

6.
$$g(x) = \frac{2-x}{2+x}$$
; at $x = 2$ and $x = -2$

ANSWER:

Discontinuous at x = -2; g(-2) is undefined and g(x) approaches $-\infty$ as x approaches -2 from the left and ∞ as x approaches -2 from the right, so g(x) has an infinite discontinuity at x = -2. Continuous at x = 2; g(2) = 0, $\lim_{x \to 2} g(x) = 0$, and $\lim_{x \to 2} g(x) = g(2)$.

8.
$$h(x) = \frac{x(x-6)}{x^3}$$
; at $x = 0$ and $x = 6$

ANSWER:

Discontinuous at x = 0; h(0) is undefined and h(x) approaches $-\infty$ as x approaches 0 from both sides, so h(x) has an infinite discontinuity at x = 0. Continuous at x = 6; h(6) = 0, $\lim_{x \to 6} h(x) = 0$, and $\lim_{x \to 6} h(x) = h(6)$.

eSolutions Manual - Powered by Cognero

10.
$$f(x) = \begin{cases} x^2 - 1 & \text{if } x > -2 \\ x - 5 & \text{if } x \le -2 \end{cases}$$
; at $x = -2$

ANSWER:

Discontinuous at x = -2; f(x) approaches -2 as x approaches -2 from the left and 3 as x approaches -2 from the right, so f(x) has a jump discontinuity at x = -2.

Determine between which consecutive integers the real zeros of each function are located on the given interval.

14.
$$g(x) = -x^3 + 6x + 2$$
; [-4, 4]

ANSWER:

-3 and -2, -1 and 0, 2 and 3

16.
$$h(x) = -x^4 + 4x^3 - 5x - 6$$
; [3, 5]

ANSWER:

3 and 4

18.
$$g(x) = \frac{x^2 + 3x - 3}{x^2 + 1}$$
; [-4, 3]

ANSWER:

-4 and -3, 0 and 1

20.
$$f(x) = \sqrt{x^2 - 6}$$
; [3, 8]

ANSWER:

6 and 7

Use the graph of each function to describe its end behavior. Support the conjecture numerically.

22

ANSWER:

From the graph, it appears that $f(x) \to \infty$ as $x \to -\infty$ and $f(x) \to \infty$ as $x \to \infty$.

X	f(x)
-10,000	4 • 10 16
-1000	4 · 10 12
0	0
1000	4 · 10 12
10,000	4 • 10 16

eSolutions Manual - Powered by Cognero

24.

ANSWER:

From the graph, it appears that $f(x) \to -\infty$ as $x \to -\infty$ and $f(x) \to \infty$ as $x \to \infty$.

X	f(x)
-10,000	-9995
-1000	-995
0	-0.3333
1000	1005
10,000	10,005

eSolutions Manual - Powered by Cognero
Page 4

26

ANSWER:

From the graph, it appears that $f(x) \to -\infty$ as $x \to -\infty$ and $f(x) \to \infty$ as $x \to \infty$.

X	f(x)
-10,000	-5000
-1000	-500
0	undefined
1000	499.7
10,000	4999.7
•	

eSolutions Manual - Powered by Cognero
Page 5

28

ANSWER:

From the graph, it appears that $f(x) \to 7$ as $x \to -\infty$ and $f(x) \to 7$ as $x \to \infty$.

Х	f(x)
-10,000	7.000001
-1000	7.00001
0	-4
1000	7.00001
10,000	7.0000001

eSolutions Manual - Powered by Cognero
Page 6