Graph each function using a graphing calculator, and apply the horizontal line test to determine whether its inverse function exists. Write yes or no.

$$4. f(x) = 3x - 8$$

ANSWER:

yes

$$8.f(x) = -4x^2 + 8$$

ANSWER:

no

$$12.f(x) = \frac{1}{4}x^3$$

ANSWER:

yes

Determine whether each function has an inverse function. If it does, find the inverse function and state any restrictions on its domain.

$$16.f(x) = \sqrt{x+8}$$

ANSWER:

yes;
$$f^{-1}(x) = x^2 - 8, x \ge 0$$

$$20. g(x) = \frac{x-6}{x}$$

yes;
$$g^{-1}(x) = \frac{-6}{x-1}$$
, $x \neq 1$

24.
$$h(x) = \frac{x+4}{3x-5}$$

ANSWER:

yes;
$$h^{-1}(x) = \frac{5x+4}{3x-1}, x \neq \frac{1}{3}$$

Show algebraically that f and g are inverse functions.

$$28. f(x) = 4x + 9$$

$$g(x) = \frac{x-9}{4}$$

$$f[g(x)] = 4\left(\frac{x-9}{4}\right) + 9$$

$$= x - 9 + 9$$

$$= x$$

$$g[f(x)] = \frac{4x+9-9}{4}$$

$$=\frac{4x}{4}$$

$$= x$$

$$32.f(x) = (x+8)^{\frac{3}{2}}$$
$$g(x) = x^{\frac{2}{3}} - 8; x \ge 0$$

ANSWER:

$$f[g(x)] = \left(x^{\frac{2}{3}} - 8 + 8\right)^{\frac{3}{2}}$$

$$= \left(x^{\frac{2}{3}}\right)^{\frac{3}{2}}$$

$$= x$$

$$g[f(x)] = \left[\left(x + 8\right)^{\frac{3}{2}}\right]^{\frac{2}{3}} - 8$$

$$= x + 8 - 8$$

$$= x$$

$$36.f(x) = \frac{x-6}{x+2}$$
$$g(x) = \frac{2x+6}{1-x}$$

$$f[g(x)] = \frac{\frac{2x+6}{1-x} - 6}{\frac{2x+6}{1-x} + 2}$$

$$= \frac{\frac{2x+6}{1-x} - \frac{6(1-x)}{1-x}}{\frac{1-x}{2x+6} + \frac{2(1-x)}{1-x}}$$

$$= \frac{\frac{2x+6-6+6x}{1-x}}{\frac{2x+6-6+6x}{2x+6+2-2x}}$$

$$= \frac{\frac{2x+6-6+6x}{2x+6+2-2x}}{\frac{2x+6+2-2x}{2x+6+2-2x}}$$

$$= \frac{8x}{8}$$

$$= x$$

$$g[f(x)] = \frac{2\left(\frac{x-6}{x+2}\right) + 6}{1-\frac{x-6}{x+2}}$$

$$= \frac{\frac{2(x-6)}{x+2} + \frac{6(x+2)}{x+2}}{\frac{x+2}{x+2} - \frac{x-6}{x+2}}$$

$$= \frac{2x-12+6(x+2)}{x+2}$$

$$= \frac{2x-12+6(x+2)}{x+2}$$

$$= \frac{2x-12+6x+12}{x+2-x+6}$$

$$= \frac{8x}{8}$$

$$= x$$

eSolutions Manual - Powered by Cognero

Use the graph of each function to graph its inverse function.

40

ANSWER:

- 44. **JOBS** Jamie sells shoes at a department store after school. Her base salary each week is \$140, and she earns a 10% commission on each pair of shoes that she sells. Her total earnings f(x) for a week in which she sold x dollars worth of shoes is f(x) = 140 + 0.1x.
 - **a.** Explain why the inverse function $f^{-1}(x)$ exists. Then find $f^{-1}(x)$.
 - **b.** What $dof^{-1}(x)$ and x represent in the inverse function?
 - **c**. What restrictions, if any, should be placed on the domains of f(x) and $f^{-1}(x)$? Explain.
 - d. Find Jamie's total sales last week if her earnings for that week were \$220.

- **a.** Sample answer: The graph of the function is linear, so it passes the horizontal line test. Therefore, it is a one-to-one function and it has an inverse; $f^{-1}(x) = 10x 1400$.
- **b.** x represents Jamie's earnings for a week, and $f^{-1}(x)$ represents her sales.
- $\mathbf{c} \cdot x \ge 0$, Jamie cannot have negative sales.
- **d.** \$800