12-2 Evaluating Limits Algebraically

Use the properties of limits to evaluate each limit.

2.
$$\lim_{x \to 5} \frac{x^2 + 4x + 13}{x - 3}$$

ANSWER:

29

4.
$$\lim_{x \to -2} \frac{2x^5 - 4x^3 - 2x - 12}{x^3 + 5x^2}$$

ANSWER:

$$-\frac{10}{3}$$

6.
$$\lim_{x \to -4} \left[x^2 (x+1) + 2 \right]$$

ANSWER:

-46

8.
$$\lim_{x\to 1} \frac{x^3 + 2x - 11}{x+3}$$

ANSWER:

-2

10.
$$\lim_{x \to -6} \frac{x^4 - x^3}{x^2}$$

ANSWER:

42

Use direct substitution, if possible, to evaluate each limit. If not possible, explain why not.

$$\lim_{12. x \to 2} \left(4x^3 - 3x^2 + 10 \right)$$

ANSWER:

30

14.
$$\lim_{x \to 3} \sqrt{2-x}$$

ANSWER:

Not possible; when x = 3, the function $f(x) = \sqrt{2-x}$ is $\sqrt{-1}$, which is not a real number.

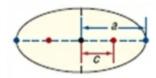
16.
$$\lim_{x \to 4} \frac{x+4}{x-4}$$

ANSWER:

Not possible; when x = 4, the denominator is 0.

18.
$$\lim_{x\to 0} (3x^2 - 10x + 35)$$

ANSWER:


188

20.
$$\lim_{x \to 1} \left(-x^2 + 3x + \sqrt{x} \right)$$

ANSWER:

3

22. **GEOMETRY** The area of an ellipse is defined as $A = \pi a \sqrt{a^2 - c^2}$, where a is the distance from the vertices to the center and c is the distance from the foci to the center.

- **a.** What is the area of an ellipse for a = 5 and c = 3?
- **b.** What happens to the eccentricity of an ellipse as the foci move closer to the center of the ellipse?
- **c.** What is the limit of the area of the ellipse as *c* approaches 0 in terms of *a*?

ANSWER:

- **a.** 20π or 62.83 units²
- **b.** The eccentricity of the ellipse approaches 0, thus making the ellipse look more like a circle.

 $\mathbf{c}. \pi a^2$

Evaluate each limit.

24.
$$\lim_{x\to 0} \frac{4x}{\sqrt{x+1}-1}$$

ANSWER:

8

12-2 Evaluating Limits Algebraically

26.
$$\lim_{x\to 9} \frac{\sqrt{x}-3}{x-9}$$

ANSWER:

 $\frac{1}{6}$

28.
$$\lim_{x \to 7} \frac{5 - \sqrt{18 + x}}{x - 7}$$

ANSWER:

 $-\frac{1}{10}$

30.
$$\lim_{x \to \frac{1}{2}} \frac{8x^2 + 2x - 3}{12x^2 + 8x - 7}$$

ANSWER:

 $\frac{1}{2}$

32.
$$\lim_{x \to -3} \frac{x^2 - 2x - 15}{x + 3}$$

ANSWER:

-8

34.
$$\lim_{x\to 0} \frac{\sqrt{16+x}-4}{x}$$

ANSWER:

1

Evaluate each limit.

36.
$$\lim_{x \to \infty} \frac{3x^3 - 10x + 2}{4x^3 + 20x^2}$$

ANSWER:

3

38.
$$\lim_{x \to x} (10x + 14 + 6x^2 - x^4)$$

ANSWER:

 $-\infty$

40.
$$\lim_{x \to \infty} \frac{14x^3 - 12x}{4x^2 + 13x - 8}$$

ANSWER:

 ∞

42.
$$\lim_{x \to \infty} \frac{6x^5 - 12x^2 + 14x}{2x^5 + 13x^3}$$

ANSWER:

3

44.
$$\lim_{x \to \infty} \frac{6x^3 + 2x - 11}{-x^5 + 17x^3 + 4x}$$

ANSWER:

0

46.
$$\lim_{x \to -\infty} (2x^5 - 4x^2 + 10x - 8)$$

ANSWER:

 $-\infty$