2-2 Polynomial Functions

Graph each function.

$$4.f(x) = x^5 + 7$$

ANSWER:

$$8.f(x) = (x+4)^3 - 3$$

ANSWER:

Describe the end behavior of the graph of each polynomial function using limits. Explain your reasoning using the leading term test.

$$12.f(x) = -5x^7 + 6x^4 + 8$$

ANSWER:

The degree is 7, and the leading coefficient is -5. Because the degree is odd and the leading coefficient is negative, $\lim_{x \to \infty} f(x) = \infty$ and $\lim_{x \to \infty} f(x) = -\infty$.

16.
$$h(x) = 8x^2 + 5 - 4x^3$$

ANSWER:

The degree is 3, and the leading coefficient is -4. Because the degree is odd and the leading coefficient is negative, $\lim_{x \to \infty} f(x) = \infty$ and $\lim_{x \to \infty} f(x) = -\infty$.

$$20.f(x) = -x(x-4)(x+5)$$

ANSWER:

The degree is 3, and the leading coefficient is -1. Because the degree is odd and the leading coefficient is negative, $\lim_{x \to -\infty} f(x) = \infty$ and $\lim_{x \to \infty} f(x) = -\infty$.

2-2 Polynomial Functions

State the number of possible real zeros and turning points of each function. Then determine all of the real zeros by factoring.

$$24. f(x) = x^6 - 8x^5 + 12x^4$$

ANSWER:

6 real zeros and 5 turning points; 0, 6, and 2

$$28.f(x) = 4x^8 + 16x^4 + 12$$

ANSWER:

8 real zeros and 7 turning points; no real zeros

$$32.f(x) = 3x^5 + 11x^4 - 20x^3$$

ANSWER:

5 real zeros and 4 turning points; 0, $\frac{4}{3}$, and -5

For each function, (a) apply the leading-term test, (b) determine the zeros and state the multiplicity of any repeated zeros, (c) find a few additional points, and then (d) graph the function.

$$36. f(x) = 2x(x+5)^{2}(x-3)$$

ANSWER:

a. The degree is 4, and the leading coefficient is 2. Because the degree is even and the leading coefficient is positive, $\lim_{x \to \infty} f(x) = \infty$ and $\lim_{x \to \infty} f(x) = \infty$.

b. 0, –5 (multiplicity:2), 3

c. Sample answer: (-6, 108), (-1, 128), (1, -144), (4, 648)

d.

2-2 Polynomial Functions

$$40.f(x) = -2x^3 - 4x^2 + 6x$$

ANSWER:

a. The degree is 3, and the leading coefficient is -2. Because the degree is odd and the leading coefficient is negative, $\lim_{x \to \infty} f(x) = \infty$ and $\lim_{x \to \infty} f(x) = -\infty$.

b.0, -3, 1

c. Sample answer: (-4, 40), (-2, -12), (0.5, 1.75), (2, -20)

d.

