1)
$$f(x) = \ln x + 3$$

Domain:(0,∞)

Range: (~ \infty \infty \infty)

Any intercepts: X-MF

Decreasing: none.04,0)

Increasing: (0, 20)

Asymptote Equation: $\chi = 0$

4) Use the change of base formula to evaluate. Route to the nearest thousandth.

End Behavior:

Domain: (- 🛶 🕶)

Range: (-2, ∞)

Any intercepts: 4-int: (0,-1.6) 72-int: (1.7,0)

Decreasing: Nove

Increasing: (-000)

Asymptote Equation: $\gamma = -2$

End Behavior: lin f(x) = 00 linf(x) = 2

3) In mediaeval times, there were 10,000 people living in a city that was struck by a plague so that people began to die at an exponential rate daily. After 6 days, there were only 8,500 people living. Find the rate as a percentage. Then, determine how many were living after three weeks.

- ralu!
- 10,000 8500
- Y=10,000 (.9732.)
 - 1=.0268 or (2.7%
- 2500=10000 (1-r)6 √1.85 = (1-c)6
 - ,9737 ... = 1-1
 - (= .0267... or (=(2.7%)

y = 10000 (1-,0267...)

 $\log_{12} 21$ 10921 - (1.225

5) Expand: $\ln \frac{z^2(x-1)}{\sqrt[3]{5y+2}}$

L=2+ h(x-1)- h(6y+2)"3

2 hot + h (x-1) + 1 h (5y+2)

6) Condense: $\frac{1}{4}(log_25 + log_2x - log_24 - 2log_2y)$

$$\frac{1}{4} \left(\log_2 5x - \log_2 4 - \log_2 4^2 \right)$$

$$\frac{1}{4} \left(\log_2 \left(\frac{5x}{4} \right) - \log_2 4^2 \right)$$