Sketch and analyze the graph of each function. Describe its domain, range, intercepts, asymptotes, end behavior, and where the function is increasing or decreasing.

2.
$$r(x) = 5^x$$

ANSWER:

D =
$$(-\infty, \infty)$$
; R = $(0, \infty)$; y-intercept: 1; asymptote: x-axis; $\lim_{x \to -\infty} r(x) = 0$, $\lim_{x \to \infty} r(x) = \infty$; increasing on $(-\infty, \infty)$

4.
$$k(x) = 6^x$$

ANSWER:

D =
$$(-\infty, \infty)$$
; R = $(0, \infty)$; y-intercept: 1; asymptote: x-axis; $\lim_{x \to \infty} k(x) = 0$, $\lim_{x \to \infty} k(x) = \infty$; increasing on $(-\infty, \infty)$

$$6. p(x) = 0.1^{-x}$$

ANSWER:

$$D = (-\infty, \infty)$$
; $R = (0, \infty)$; y -intercept: 1; asymptote: x -axis; $\lim_{x \to -\infty} p(x) = 0$, $\lim_{x \to \infty} p(x) = \infty$; increasing for $(-\infty, \infty)$

8.
$$g(x) = \left(\frac{1}{3}\right)^x$$

ANSWER:

$$D = (-\infty, \infty)$$
; $R = (0, \infty)$; y-intercept: 1; asymptote: x-axis; $\lim_{x \to \infty} g(x) = \infty$, $\lim_{x \to \infty} g(x) = 0$; decreasing on $(-\infty, \infty)$

10.
$$d(x) = 5^{-x} + 2$$

ANSWER:

D =
$$(-\infty, \infty)$$
; R = $(2, \infty)$; y-intercept: 3; asymptote: $y = 2$; $\lim_{x \to \infty} d(x) = \infty$, $\lim_{x \to \infty} d(x) = 2$; decreasing for $(-\infty, \infty)$

Use the graph of f(x) to describe the transformation that results in the graph of g(x). Then sketch the graphs of f(x) and g(x).

12.
$$f(x) = \left(\frac{1}{2}\right)^x; g(x) = \left(\frac{1}{2}\right)^{x+4}$$

ANSWER:

g(x) is the graph of f(x) translated 4 units to the left.

$$14. f(x) = 2^x; g(x) = 2^{x-2} + 5$$

ANSWER:

g(x) is the graph of f(x) translated 2 units to the right and 5 units up.

$$16.f(x) = e^x; g(x) = e^{2x}$$

ANSWER:

g(x) is the graph of f(x) compressed horizontally by a factor of 2.

$$18. f(x) = e^{x}; g(x) = e^{-x+1}$$

ANSWER:

g(x) is the graph of f(x) reflected in the y-axis and translated 1 unit to the right.

$$20.f(x) = e^{x}; g(x) = -(e^{x}) + 4$$

ANSWER:

g(x) is the graph of f(x) reflected in the x-axis and translated 4 units up.

