3-2 Logarithmic Functions

Evaluate each expression.

ANSWER:

1

4.4^{log}41

ANSWER:

1

 $6. \log_2 2^3$

ANSWER:

3

8. log 0.01

ANSWER:

-2

10. $\log_x x^2$

ANSWER:

2

12. $\ln e^{-14}$

ANSWER:

-14

14. $\ln (5 - \sqrt{6})$

ANSWER:

≈ 0.936

16. $4 \ln (7 - \sqrt{2})$

ANSWER:

≈ 6.88

18. $\frac{\ln 2}{\ln 7}$

ANSWER:

≈ 0.356

3-2 Logarithmic Functions

20.
$$\ln\left(\frac{1}{e^{12}}\right)$$

ANSWER:

$$-12$$

22. log_{3/4} 64

21

24. log 1000

3

Use the graph of f(x) to describe the transformation that results in the graph of g(x). Then sketch the graphs of f(x) and g(x).

$$34. f(x) = \log_2 x; g(x) = \log_2 (x + 4)$$

ANSWER:

The graph of g(x) is the graph of f(x) translated 4 units to the left.

$$36. f(x) = \log x; g(x) = \log 2x$$

ANSWER:

The graph of g(x) is the graph of f(x) compressed horizontally by a factor of 2.

3-2 Logarithmic Functions

$$38. f(x) = \log x; g(x) = -\log (x - 2)$$

ANSWER:

The graph of g(x) is the graph of f(x) reflected in the x-axis and translated 2 units to the right.

$$40. f(x) = \log x; g(x) = -2 \log x + 5$$

ANSWER:

The graph of g(x) is the graph of f(x) reflected in the x-axis, expanded vertically by a factor of 2, and translated 5 units up.

