4.1 (day 1)

1) Solve for the missing side:

3) Solve for θ . Round to the nearest tenth.

2) Given the cosecant of θ in a right triangle is

 $2\sqrt{3}$, find the exact other 5 trig functions.

sec 0 = 2/3.

 $\frac{5}{2} \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{3}$ $\frac{1}{2} \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{3} \frac{1}{3}$

4) Willis Tower stands approximately 1,450 ft. If you're standing a mile east from it on the shores of Lake Michigan, what is the angle created from your eye to top?

Name:

4.1 (day 1)

1) Solve for the missing side:

2) Given the cosecant of θ in a right triangle is $2\sqrt{3}$, find the exact other 5 trig functions.

3) Solve for θ . Round to the nearest tenth.

4) Willis Tower stands approximately 1,450 ft. If you're standing a mile east from it on the shores of Lake Michigan, what is the angle

5) A parasailer is attached to a boat with a rope 300 ft. long. The angle of elevation from the boat to the parasailer is 48°. Estimate the parasailer's height above the boat.

$$\sin 48^\circ = \frac{x}{300}$$

$$x = 222.94 \text{ ft}$$

6) In a light house, on a 100 ft. cliff stand 120 ft. high. A boat is sited 350 ft. from shore. Determine the angle of

4.1 (day 2)

5) A parasailer is attached to a boat with a rope 300 ft. long. The angle of elevation from the boat to the parasailer is 48°. Estimate the parasailer's height above the boat.

6) In a light house, on a 100 ft. cliff stand 120 ft. high. A boat is sited 350 ft. from shore. Determine the angle of depression.