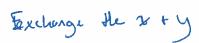

4.4, 4.7, 5.3-5.5 Review

4.4 [| & ⊥Lines]

- 1) What do we focus on to assess if two lines are parallel?
 - Slope; it's
- 2) What do we focus on to assess if two lines are perpendicular?

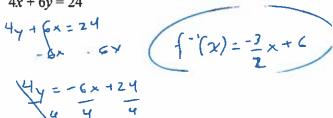
3) Write an equation in slope-intercept form for the line that passes through the given point and is parallel to the graph of the equation.

$$y-7=\frac{1}{2}(x+8)$$
 $y-7=-\frac{1}{2}x-4$
 $y=-\frac{1}{2}x+3$

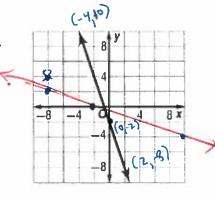

4) Write an equation in slope-intercept form for the line that passes through the given point and is perpendicular to the graph of each equation. y+2= (x-6)

$$(6, -2), y = -3x - 6$$

$$y = \frac{1}{3} \times -2$$
 $y = \frac{1}{3} \times -4$


4.7 [f¹ (x) functions]

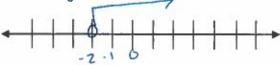
5) How do you find the inverse of a function?



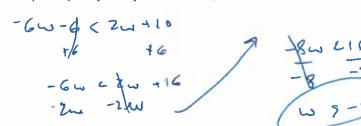
6) Write the inverse of the equation in $f^{-1}(x)$ notation:

$$4x + 6y = 24$$
 $4y + 6x = 24$
 $-6x - 6y$
 $4y = -6x + 24$
 $4y = -6x + 24$

7) Graph the inverse of the function.



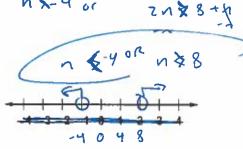
5.3 [multi-step inequalities]


8) When do you change the inequality when solving equations?

When must shirede by a neg

9) Solve and graph inequality. Give a possible solution

$$-6(w+1) < 2(w+5)$$


5.4 [compound inequalities]

10) Compare and contrast "and" and "or" inequalities

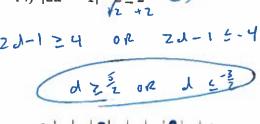
L, L ore ands; the graph connects >, 2 are ors, the graph goes apposite ways

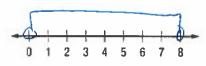
For 11 & 12, solve each compound inequality. Then graph the solution set.

$$1(1) \frac{1}{2}n < -2 \text{ or } 2n - 2 > 6 + n$$

5.5 [Inequalities involving absolute value]

13) What makes an absolute inequality an "and?" What makes it an "or?"


4,4


For 14 & 15, solve each inequality. Then graph the solution set.

14) $|2d - 1| - \chi \ge 2$

15) |x - 4| < 4

