Mama		
Name:	 	

6.3 Practice

1) Solve using matrix equations.

$$p - 2q = 1$$
$$p + 5q = 22$$

2) Solve using matrix equations.

$$4y = 7 - 2x$$

$$6 = 3x - 3y$$

3) Solve using a graphing calculator:

$$4x-3z = -23$$
$$-2x-5y+z = -9$$
$$y-z=3$$

4) Which system of linear equations is represented by the matrix equation: (then solve)

$$\begin{bmatrix} 2 & 5 \\ 7 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 35 \\ -28 \end{bmatrix}$$

a)
$$2x + 5y = 35$$
$$7x - 4y = -28$$

b)
$$2x + 5x = 35$$
$$7y - 4y = -28$$

c)
$$2x + 7y = 35$$
$$5x - 4y = -28$$

d)
$$2+5x = 35$$

 $7-4y = -28$

e) none of these

Name:_____

6.3 Practice

1) Solve using matrix equations.

$$p - 2q = 1$$
$$p + 5q = 22$$

2) Solve using matrix equations.

$$4y = 7 - 2x$$

$$6 = 3x - 3y$$

3) Solve using a graphing calculator:

$$4x-3z = -23$$
$$-2x-5y+z = -9$$
$$y-z=3$$

4) Which system of linear equations is represented by the matrix equation: (then solve)

$$\begin{bmatrix} 2 & 5 \\ 7 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 35 \\ -28 \end{bmatrix}$$

a)
$$2x + 5y = 35$$
$$7x - 4y = -28$$

b)
$$2x + 5x = 35 7y - 4y = -28$$

c)
$$2x + 7y = 35$$
$$5x - 4y = -28$$

5x-4y = -28
d)
$$2+5x = 35$$

 $7-4y = -28$

5) A collection of nickels and quarters amounts to \$2.60. There are 16 coins in all. Utilizing matrices, determine how many there are of each coin.
6) A total value of \$1 bills and \$5 bills in a cash box is \$124. There are 8 more \$5 bills than \$1 bills. Utilizing matrices, determine how many there are of each.
7) Hunter bought a mixture of 20-cent, 35-cent & 50-cent valentines. The number of 20-cent valentines was 1 more than twice the number of 35-cent valentines, and the number of 50-cent valentines was 2 less than the number of 35-cent ones. If he spent \$4.20 all together, use matrices to find how many valentines of each kind he bought.
5) A collection of nickels and quarters amounts to \$2.60. There are 16 coins in all. Utilizing matrices, determine how many there are of each coin.
6) A total value of \$1 bills and \$5 bills in a cash box is \$124. There are 8 more \$5 bills than \$1 bills. Utilizing matrices, determine how many there are of each.
7) Hunter bought a mixture of 20-cent, 35-cent & 50-cent valentines. The number of 20-cent valentines was 1 more than twice the number of 35-cent valentines, and the number of 50-cent valentines was 2 less than the number of 35-cent ones. If he spent \$4.20 all together, use matrices to find how many valentines of each kind he bought.