For numbers 1 & 2, identify the vertex, focus, axis of symmetry, and directrix for each equation. Then graph the parabola.

1.
$$(x-1)^2 = 8(y-2)$$

Vertex: (1,2)

Focus: (1,4)

Axis of symmetry: X=

Directrix: Y = 0

 $2. y^2 + 6y + 9 = 12 - 12x$

(y+3)2=-12(x-1)

Axis of symmetry: $\sqrt{-3}$

Directrix: X = 4

3. Write $x^2 + 8x = -4y - 8$ in standard form. Identify the vertex, focus, axis of symmetry, and directrix.

$$(x+4)^2 = -4y - 8 + 16$$

K: (2) = (15 - Y)

Dtx: y=3

For numbers 4 & 5, write an equation for and graph a parabola with the given characteristics.

4. vertex (-2, 4); focus (-2, 3)

Equation: $-4(y-4) - (x+2)^2$

(h+p,K) 5. focus (2, 1); opens right; obntains (8, -7)

4p (x-h) = (y-k)

Equation:
$$\S(x) = (y-1)^2$$

6. Suppose the receiver in a parabolic dish antenna is 2 feet from the vertex and is located at the focus. Assume that the vertex is at the origin and that the dish is pointed upward. Find an equation that models a cross section of the dish.

7. The figure shows a parabolic reflecting mirror. A cross section of the mirror can be modeled by $x^2 = 16$, where the values of x and y are measured in inches. Find the distance from the vertex to the focus of this mirror.

- 8. T-SHIRTS The cheerleaders at the high school basketball game launch T-shirts into the stands after a victory. The launching device propels the shirts into the air at an initial velocity of 32 feet per second. A shirt's distance y in feet above the ground after x seconds can be modeled by $y = -16x^2 + 32x + 5$.
- a) Write the equation in standard form.

b) What is the maximum height that a T-shirt reaches?

- $y-21=-16(x-1)^{2}$ $\frac{-\frac{1}{16}(y-21)=(x-1)^{2}}{(x-1)^{2}}$