For numbers 1 & 2, graph the ellipse given by each equation.

$$1.4x^{2} + 9y^{2} - 8x - 36y + 4 = 0$$

$$4(x^{2} - 2x + 1) + 9(y^{2} - 4y + 4) = -4 + 4 + 36$$

$$\frac{(x - 1)^{2}}{9} + \frac{(y - 2)^{2}}{4} = 1$$

Equation:
$$\frac{(x-1)^2}{9} + \frac{(y-2)^2}{y} = 1$$

Vertices:
$$(4,2) + (-2,2)$$

Co-Vertices:
$$(1,0) + (1,4)$$

$$2.\ 25x^2 + 9y^2 - 50x - 90y + 25 = 0$$

$$\frac{25(x^{2}-2x+1)+q(y^{2}-10y+25)=-25+25+255}{25(x-1)^{2}+q(y-5)^{2}=225}$$

Equation:
$$\frac{(x-1)^2}{9} + \frac{(y-5)^2}{25} = 1$$
 $c = 4$

Co-Vertices:
$$(-2,5) + (4,5)$$

For numbers 3 & 4, write an equation for the ellipse with each set of characteristics.

3. vertices (-12, 6), (4, 6); foci (-10, 6), (2, 6)

center: (-4,6)

62 = a2 - b2

$$36 = 64 - 6^2$$

4. foci (-2, 1), (-2, 7); length of major axis 10 units

center: (-2,4)

$$50 = 5$$
 $9 = 25 - 6^2$

$$\frac{(x+2)^2}{16} + \frac{(y-4)^2}{25} = 1$$

For numbers 5-8, write each equation in standard form. Identify the related conic.

5.
$$y^2 - 4y = 4x + 16$$
 Parabola!
 $y^2 - 4y + 4 = 4x + 16 + 4$
 $(y-2)^2 = 4x + 26$
 $(y-2)^2 = 4(x+5)$
7. $x^2 + y^2 - 8x - 24y = 9$
 $x^2 - 8x + 16 + y^2 - 24y + 449 = 9 + 16 + 1449$
 $(x-4)^2 + (y-12)^2 = 169$
Circle!

6.
$$4x^2 - 32x + 3y^2 - 18y = -55$$

$$4(x^2 - 8x + 16) + 3(y^2 - 6y + 9) = -55 + 64 + 27$$

$$4(x - 4)^2 + 3(y - 3)^2 = 36$$

$$(x - 4)^2 + (y - 3)^2 = 1$$

$$5(x - 4)^2 + (y - 3)^2 = 1$$

$$6. 4x^2 - 32x + 3y^2 - 18y = -55$$

$$(x - 4)^2 + 3(y - 3)^2 = 36$$

$$(x - 4)^2 + (y - 3)^2 = 1$$

$$6. 4x^2 - 32x + 3y^2 - 18y = -55$$

$$(x - 4)^2 + (y - 3)^2 = 1$$

$$6. 4x^2 - 32x + 3y^2 - 18y = -55$$

$$(x - 4)^2 + (y - 5)^2 = 121$$

$$6. 4x^2 - 32x + 3y^2 - 18y = -55$$

$$(x + 10)^2 + (y - 5)^2 = 121$$

$$6. 4x^2 - 32x + 3y^2 - 18y = -55$$

$$(x + 10)^2 + (y - 5)^2 = 121$$

9. A semi-elliptical arch is used to design a headboard for a bed frame. The headboard will have a height of 2 feet at the center and a width of 5 feet at the base. Where should the craftsman place the foci in order to sketch the arch (In other words, find the location of the foci)?

- 10. A whispering gallery at a museum is in the shape of an ellipse. The room is 84 feet long and 46 feet wide.
- a) Write an equation modeling the shape of the room. Assume that it is centered at the origin and that the major axis is horizontal.
- b) Find the location of the foci.
- 11. The entrance to a tunnel is in the shape of half an ellipse as shown in the figure. (You may assume that the ellipse is centered at the origin)
- a) Write an equation that models the ellipse.

b) Find the height of the tunnel 10 feet from the center.