9.3 Practice

$$x = r \cos \theta$$
 $y = r \sin \theta$ $\tan \theta = \frac{y}{x}$ $r = \pm \sqrt{x^2 + y^2}$ $D = \sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos(\theta_2 - \theta_1)}$

Find the rectangular coordinates for each point with the given polar coordinates.

1. (6, 120°)

2. (-4, 45°)

3. $\left(4, \frac{\pi}{6}\right)$

Find two pairs of polar coordinates for each point with the given rectangular coordinates if $0 \le \theta < 2\pi$.

4. (2, 2)

5. (2, -3)

6. $(-3, \sqrt{3})$

Identify the graph of each rectangular equation. Then write the equation in polar form. Support your answer by graphing the polar form of the equation.

7.
$$x^2 + y^2 = 9$$

8.
$$y = 3$$

Write each equation in rectangular form and then identify its graph. Support your answer by graphing the polar form of the equation.

9.
$$r = 4$$

10.
$$r \cos \theta = 5$$

