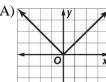
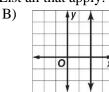
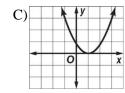
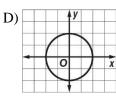
Chapter 1 (Unit A)

1. Which relation is a function? List all that apply.









2. Which results in the graph of $f(x) = \sqrt{x}$ being expanded vertically, and reflected in the *x*-axis, and shifted left 2?

F)
$$f(x) = -2\sqrt{x+2}$$

G)
$$f(x) = -3\sqrt{x} + 2$$

$$H) f(x) = \sqrt{-3x + 2}$$

$$J) f(x) = 3\sqrt{x-2}$$

- 3. If $f(x) = x^2 + 1$ and $g(x) = \frac{1}{x}$, find f(g(x)).
- 4. Find the inverse of $f(x) = x^3 4$.
- 5. What type of discontinuity (if any) does each function have?

$$a. f(x) = \frac{1}{x-2}$$

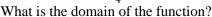
b.
$$f(x) = \frac{x^2 - x - 12}{x + 3}$$

c.
$$f(x) = -x^3 + 4x$$

- 6. Describe the end behavior of $f(x) = -8x^3 + 4x^2 7x + 1$
- 7. The function $f(x) = x^3 6x^2 + 9x + 1$ represents the height in feet of an air particle, where x is time in seconds. What is the relative maximum height reached by the particle?
- 8. Determine the intervals where the function $f(x) = -2x^3 4x^2 + x 1$ is increasing and/or decreasing.

Chapter 2 & 3 (Unit B)

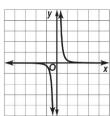
1. The graph of $f(x) = \frac{1}{4}x^{-3}$ is shown at right. What is the domain of the function?



C)
$$(-\infty, 0)$$
 or $(0, \infty)$

B)
$$(0, \infty)$$

D)
$$(-\infty, 0]$$
 or $[0, \infty)$



- 2. Determine the horizontal and vertical asymptotes for the graph of $f(x) = \frac{x^2 4}{x^3 5x^2 + 6x}$.
- 3. Create a rational function that:
- a) has no horizontal asymptotes
- b) has a horizontal asymptote at y = 2
- 4. Analyze the graph of $f(x) = \frac{1}{4}e^x$. Find the domain, range, asymptote equations, where the function is increasing & decreasing, and end behavior.

5. Solve $\log_4 x + \log_4 (x + 2) = \log_4 35$.

6. Solve $4^{x-3} = 7$

7. Solve $\log (x - 21) + \log x = 2$

- 8. There are initially 500 deer in a population in 2015. The deer are growing at a rate of 10.7% each year. Determine the year in which the population will double.
- 9. Expand: $\ln a^4 b^3 \sqrt[4]{c}$

10. Condense: $\log(x + 2) - \frac{1}{4}\log(y - 4)$