Chapter 7 (Unit C)

For Questions 1–3, refer to the ellipse represented by the equation $\frac{(x-3)^2}{25} + (y-2)^2 = 1$

1. Find the coordinates of the center.

A) (2, 3)

B) (3, 2)

C) (-3, -2) D) (-2, -3)

2. Find the coordinates of the foci.

F) $(3, 2 \pm 2\sqrt{6})$

G) (-2, 2), (8, 2) H) $(3 \pm 2\sqrt{6}, 2)$ J) $(2 \pm 2\sqrt{6}, 3)$

3. Find the coordinates of the vertices and co-vertices.

A) (8, 2), (-2, 2), (3, 3), (3, 1) B) (8, 2), (-2, 2), (3, 7), (3, -3) C) (4, 2), (2, 2), (3, 3), (3, 1) D) (4, 2), (2, 2), (3, 7), (3, -3)

For Questions 4 and 5, refer to the hyperbola represented by $\frac{(y+2)^2}{26} - x^2 = 1$

4. Write the equations of the asymptotes.

F) $y - 1 = \pm 6(x - 2)$

H) $y + 2 = \pm 6(x - 1)$

G) $y = \pm 6x$

J) $y + 2 = \pm 6x$

5. Find the coordinates of the foci.

A) $(1 \pm \sqrt{37}, -2)$

B) $(+\sqrt{37}, -2)$

C) $(6 \pm \sqrt{37}, -2)$ D) $(0, -2 \pm \sqrt{37})$

6. Write the standard form of the equation of the hyperbola for which a = 2, the transverse axis is vertical, and the equations of the asymptotes are $y = \pm 2x$.

F) $\frac{x^2}{4} - y^2 = 1$ G) $y^2 - \frac{x^2}{4} = 1$

H) $x^2 - \frac{y^2}{4} = 1$ J) $\frac{y^2}{4} - x^2 = 1$

7. Write the standard form of the equation of the parabola with directrix at y = -4 and focus at (2, 2).

F) $(y-2)^2 = 12(x+2)$

H) $(x + 2)^2 = 12 (y - 2)$

G) $y + 1 = 12 (x - 2)^2$

J) $(x-2)^2 = 12(y+1)$

Chapter 10 (Unit D)

- 1. Which of the following is a rule for the *n*th term of the **arithmetic** sequence: $a_5 = 18$, $a_{17} = 66$
- a) $a_n = 4n + 2$

- b) $a_n = 4n 2$ c) $a_n = 2n + 4$ d) $a_n = 2n 4$ e) $a_n = 7n 17$
- 2. Find the common ratio of the infinite geometric series whose sum is $\frac{8}{9}$ and first term is $a_1 = \frac{1}{4}$ (Write as a fraction)
- 3. What is the sum of the series: $-30+15-\frac{15}{2}+\frac{15}{4}...$

4. Write a rule for the sequence: 5, 2, 0.8, 0.32... and then find the value of the 7^{th} term.

5. Find S_{84} for the **arithmetic** series $12 + 6 + 0 + \dots$

6. What is S_{10} for the **geometric** series 2-8+32-128+...