For Questions 1–3, refer to the ellipse represented by the equation $\frac{(x-3)^2}{25} + (y-2)^2 = 1$.

1. Find the coordinates of the center.

$$C(-3, -2)$$

$$\mathbf{D}(-2, -3)$$

2. Find the coordinates of the foci.

F (3,
$$2 \pm 2\sqrt{6}$$
)

$$G(-2, 2), (8, 2)$$

H (3 ±
$$2\sqrt{6}$$
 . 2)

H (
$$3 \pm 2\sqrt{6}$$
 , 2) **J** ($2 \pm 2\sqrt{6}$, 3)

3. Find the coordinates of the vertices and co-vertices.

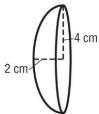
$$\mathbf{A}(8,2), (-2,2), (3,3), (3,1)$$

$$\mathbf{C}(4,2),(2,2),(3,3),(3,1)$$

$$\mathbf{B}$$
 (8, 2), (-2, 2), (3, 7), (3, -3)

$$\mathbf{D}(4,2),(2,2),(3,7),(3,-3)$$

4. Use the discriminant to identify the conic section $3y^2 - 3x^2 + 12y + 18x = 42$.


5. A cross section of the reflector shown is in the shape of a parabola. Write an equation for the cross section.

$$\mathbf{A} y^2 = 4x$$

$$\mathbf{B} \ y^2 = 8x$$

$$\mathbf{C} \ x^2 = 4y$$
$$\mathbf{D} \ x^2 = 8y$$

$$\mathbf{D} x^2 = 8y$$

For Questions 6 and 7, refer to the hyperbola represented by $\frac{(y+2)^2}{36} - x^2 = 1$

6. Write the equations of the asymptotes.

$$\mathbf{F} y - 1 = \pm 6 (x - 2)$$

$$\mathbf{G} \mathbf{y} = \pm 6x$$

H
$$y + 2 = \pm 6(x - 1)$$

$$\mathbf{J} \dot{\mathbf{v}} + 2 = \pm 6x$$

7. Find the coordinates of the foci.

A
$$(1 \pm \sqrt{37}, -2)$$
 B $(\pm \sqrt{37}, -2)$

B
$$(\pm \sqrt{37} - 2)$$

C
$$(6 + \sqrt{37}, -2)$$

C
$$(6 \pm \sqrt{37}, -2)$$
 D $(0, -2 \pm \sqrt{37})$

8. Write the standard form of the equation of the hyperbola for which a = 2, the transverse axis is vertical, and the equations of the asymptotes are $y = \pm 2x$.

$$\mathbf{F} \frac{x^2}{4} - y^2 = 1$$

$$\mathbf{G} y^2 - \frac{x^2}{4} = 1$$

$$\mathbf{H} x^2 - \frac{y^2}{4} = 1$$

$$\mathbf{F} \frac{x^2}{4} - y^2 = 1$$
 $\mathbf{G} y^2 - \frac{x^2}{4} = 1$ $\mathbf{H} x^2 - \frac{y^2}{4} = 1$ $\mathbf{J} \frac{y^2}{4} - x^2 = 1$

9. Write the standard form of the equation of the parabola with directrix at y = -4 and focus at (2, 2).

$$\mathbf{F}(y-2)^2 = 12(x+2)$$

H
$$(x + 2)^2 = 12 (y - 2)$$

J $(x - 2)^2 = 12 (y + 1)$

$$\mathbf{G} y + 1 = 12 (x - 2)^2$$

$$\mathbf{J}(x-2)^2 = 12(y+1)$$

10. Identify the graph of the equation $4x^2 - 5xy + 16y^2 - 32 = 0$.