1. Which relation is a function?

 \mathbf{C}

2. Describe the end behavior of the graph of $f(x) = -2x^3 + 3x - 4$ using limit notation.

$$f(x) = \begin{cases} -2 \mid x + 7 | \text{ if } x < -1 \\ -4 \text{ if } x \ge -1 \end{cases}$$

a. Find
$$f(-1)$$

b. Find
$$f(-1)$$

$$\mathbf{A} f(x) = \frac{x^2 - 36}{x - 6}$$

$$\mathbf{B} f(x) = x^5 - x^3$$

$$\mathbf{C} f(x) = \begin{cases} 2x \text{ if } x < 0 \\ 3x + 1 \text{ if } x \ge 0 \end{cases}$$
 $\mathbf{D} f(x) = \frac{1}{3x - 5}$

$$\mathbf{D} f(x) = \frac{1}{3x - 5}$$

5. Given the parent function
$$p(x) = x^3$$
, what translation occurs in the graph of $p(x) = -(x+4)^3 - 3$?

6. If
$$f(x) = 2x - 3$$
 and $g(x) = x^2 - 7$, find

a)
$$f(g(x))$$

b) find
$$g(f(x))$$

7. A toy rocket is launched from the ground straight upward. The height of the rocket above the ground, in feet, is modeled by $h(t) = -16t^2 + 64t$, where t is the time in seconds. What is the relative maximum of the function?

8. Determine the equation for the inverse of the given functions.

a)
$$f(x) = 3x^2 - 4$$

b)
$$g(x) = \frac{1}{2}\sqrt{x+4}$$

- **9.** Describe where the function $f(x) = x^4 3x^2$ is increasing and/or decreasing.
- 10. Find the domain and range of each function.

a)
$$y = \sqrt{x-5} + 2$$
 b) $y = 2x^3 - 4$

b)
$$y = 2x^3 - 4$$

d)
$$y = \frac{4x+1}{2x+3}$$

11. Determine the vertical and horizontal asymptote equations for each function.

a)
$$f(x) = \frac{x^2 + 4}{x^2 - 1}$$

$$b) f(x) = \frac{x^2}{3x+4}$$

c)
$$f(x) = \frac{x-1}{x^2-4}$$

12. For $f(x) = \frac{x-1}{x^2-4}$, find $\lim_{x\to\infty} f(x)$

For 13 – 16, evaluate. Round to the nearest hundredth if necessary.

15.
$$\log_5 \frac{1}{125}$$

16.
$$\ln e^3$$

17. Solve for *x*.

a)
$$\ln (x + 4) + \ln x = \ln 5$$

b)
$$\log_2 2x = 7$$

c)
$$\log (x + 3) + \log x = 14$$

18. Expand
$$\log_3 x^5 y^4 \sqrt[3]{z}$$

19. Condense
$$\frac{1}{4} \ln x - \ln (y + 4)$$

20. Solve for *x*. Round to the nearest hundredth if necessary.

a)
$$2^x = 14$$

b)
$$3^{2x-1} = 17$$

21. Find the domain and range of the function $=\frac{1}{2}(3)^x$.

For numbers 22 – 24, use the following function $f(x) = -4e^{x+4} + 4$

- 22. What transformations have been performed to the graph of $y = e^x$?
- 23. State the domain, range, asymptote equations, and end behavior for the function f(x)
- **24**. Determine the intervals when the function f(x) is increasing and decreasing.
- 25. There are initially 500 rabbits in a population in 2017. The rabbit population is growing at an exponential rate of 4.2% per year. Determine the year in which the population of rabbits will triple.

For numbers 26 – 28, refer to the ellipse represented by $\frac{(x-1)^2}{16} + \frac{(y+2)^2}{9} = 1$.

26. Find the coordinates of the center.

a)
$$(1, 2)$$

b)
$$(-1, -2)$$
 c) $(-1, 2)$ d) $(-2, 1)$ e) $(1, -2)$

c)
$$(-1, 2)$$

e)
$$(1, -2)$$

27. Find the coordinates of the foci.

a)
$$\left(1\pm\sqrt{7},-2\right)$$

$$a) \left(1 \pm \sqrt{7}, -2\right) \qquad \qquad b) \ (5, -2) \ , \ (-3, -2) \qquad \qquad c) \left(1, -2 \pm \sqrt{7}\right) \qquad \qquad d) \ (1, 4), \ (1, -8) \qquad \qquad e) \ (-4, -2) \ , \ (6, -2)$$

c)
$$(1, -2 \pm \sqrt{7})$$

e)
$$(-4, -2)$$
, $(6, -2)$

28. Find the coordinates of the vertices and co-vertices.

a)
$$(1, 2), (1, -6), (4, -2), (-2, -2)$$

b)
$$(5, -2), (-3, -2), (1, 1), (1, -5)$$

c)
$$(4, 2), (-2, 2), (1, 1), (1, -5)$$

d)
$$(5, -2), (-3, -2), (1, 2), (1, -6)$$

e) Ellipses don't have co-vertices

29. Find the coordinates of the foci for the hyperbola	$\frac{y^2}{4}$	$\frac{x^2}{2} = 1.$
--	-----------------	----------------------

- a) $(0, \pm \sqrt{2})$ b) $(0, \pm \sqrt{6})$ c) $(\pm \sqrt{2}, 0)$ d) $(\pm \sqrt{6}, 0)$
- e) None of these

30. Write the standard form of the equation of the hyperbola for which the transverse axis is 4 units long and vertical and the conjugate axis is 3 units long.

a) $\frac{(x-1)^2}{2.25} - \frac{(y+4)^2}{4} = 1$

b) $\frac{(y+4)^2}{2.25} - \frac{(x-1)^2}{4} = 1$

c) $\frac{(y+4)^2}{2.25} + \frac{(x-1)^2}{4} = 1$

d) $\frac{(x-1)^2}{4} - \frac{(y+4)^2}{2.25} = 1$

e) $\frac{(y+4)^2}{4} - \frac{(x-1)^2}{2.25} = 1$

31. What is the directrix of the parabola with equation $x^2 = -28y$?

- a) x = 7
- b) x = 28
- c) y = -7

- d) y = 7 e) y = 28

32. Determine the orientation of the parabola: focus (0, 4), directrix y = 1

a) up

b) down

c) left

- d) right
- e) none

33. Which of the following is an arithmetic sequence?

- a) 2, 4, 8, 14, 22, ...
- b) 1, 5, 6, 10, 11, ... c) 3, 9, 21, 39, 63, ... d) -3, 0, 6, 15, 27, ... e) 3, 8, 13, 18, 23, ...

34. What is a rule for the *n*th term of the arithmetic sequence with $a_8 = 17$ and $a_{14} = 3$?

35. What is the common ratio of an infinite geometric series whose sum is 125 and the first term is $a_1 = 625$?

36. Find the sum of the series: $\sum_{k=1}^{11} (1-3k)$

a) -396

- b) -374
- c) 198
- d) -187
- e) -100

- **37**. What is the sum of the series: $3 + 1.8 + 1.08 + 0.648 + \dots$?
- a) 5

- b) 7.5
- c) 8

d) 10

e) does not converge

- **38.** What is S_{25} for the arithmetic series 4 + 4.2 + 4.4 + 4.6 + 4.8 + ...?
- 39. What is the twelfth term of the sequence of a geometric sequence; -6, 18, -54.....
- **40**. How to do you write the series 4 + 6 + 8 + 10 using sigma notation?
- a) $\sum_{k=1}^{4} 2k$
- b) $\sum_{k=1}^{4} 2k + 2$ c) $\sum_{k=1}^{4} k + 1$ d) $\sum_{k=1}^{4} k + 3$ e) $\sum_{k=1}^{4} 2k 2$

- **41**. How do you write the series 4 + 6 + 9 + 13.5 using sigma notation?

- a) $\sum_{n=1}^{4} 1.5(n)^4$ b) $\sum_{n=1}^{4} 1.5(4)^{n-1}$ c) $\sum_{n=1}^{4} 4(1.5)^{n-1}$ d) $\sum_{n=1}^{4} n(1.5)^4$ e) $\sum_{n=1}^{4} 1.5(n-1)^4$
- **42**. Which series is represented by $\sum_{k=2}^{4} (2k^2 + k)$?
- a) 3 + 10 + 21

- b) 10 + 21 + 36 c) 3 + 7 + 11 d) 10 + 14 + 18 e) 10 + 21 + 32
- 43. What is the common ratio of the sequence $\frac{3}{100}$, $\frac{3}{50}$, $\frac{3}{25}$, $\frac{3}{12.5}$,...?
- a) $\frac{1}{2}$
- b) $\frac{3}{2}$

c) 2

d) 4

e) 6

44. What is S_6 for the geometric series 0.25 - 0.75 + 2.25 - 6.75 + ...?

45. What is the common difference of the sequence 3, 4.5, 6, 7.5, ...?

- **46**. An infinite geometric series has a sum of 200 and a common ratio $\frac{4}{5}$. Which is the first term of this series?
- **47**. Find AB if $A = \begin{bmatrix} -1 & 3 \\ 0.5 & -0.2 \end{bmatrix}$ and $B = \begin{bmatrix} -0.4 & 1.2 \\ 5 & -0.1 \end{bmatrix}$.

- a) $\begin{bmatrix} 0.62 & -1.2 \\ -1.5 & 15.4 \end{bmatrix}$ b) $\begin{bmatrix} -0.62 & 1.2 \\ 1.5 & -15.4 \end{bmatrix}$ c) $\begin{bmatrix} 15.4 & -1.5 \\ -1.2 & 0.62 \end{bmatrix}$ d) $\begin{bmatrix} -15.4 & 1.5 \\ 1.2 & -0.62 \end{bmatrix}$ e) not possible

48. Solve the following system of equations using an inverse matrix.

$$2x + \zeta = \tau$$

$$-x + 2y - 3z = 11$$
 $2x + z = 4$ $x - y + 2z = -5$

a)
$$(-3, -4, 2)$$
 b) $(3, 4, -2)$ c) $(3, -4, 2)$ d) $(-3, 4, -2)$

b)
$$(3, 4, -2)$$

c)
$$(3, -4, 2)$$

d)
$$(-3, 4, -2)$$

49. The table shows several boxes of assorted candy available at a candy shop. What is the price per pound for each candy?

Box	Chocolate	Taffy	Nougat	Price (\$)
Grand Edition	10	5	0	12.25
Special Edition	10	5	5	16.25
Deluxe Edition	15	10	5	24.25

- b) (\$0.75, \$0.80, \$0.85)
- c) (\$0.80, \$0.75, \$0.85)
- d) (\$0.75, \$0.85, \$0.80)