1. Graph the parabola given by $(x-2)^2 = -12(y-3)$.

2. Write the equation of the parabola: $y = x^2 + 14x - 104$ in standard form.

For numbers 3 - 6, use the following equation: $2y^2 - 16y - 20x + 72 = 0$.

- 3. Identify the vertex.
- 4. Identify the focus.
- 5. Identify the axis of symmetry.
- 6. Identify the directrix.

For 7 and 8, determine the orientation of the parabola. (opens up/left/down/right)

7. vertex: (-5, 1), focus (-5, 3)

- 8. directrix: y = 4; p = -2
- 9. Write an equation for the parabola with vertex (7, 10) and directrix x = 1.

10. Write the equation for the graph of a parabola with vertex (8, 19) and focus (4.75, 19).

- 12. Identify the conic in question number 11. (Is it a parabola, ellipse, or circle?)
- 13. Graph the ellipse given by $\frac{(x-9)^2}{9} + \frac{(y+3)^2}{36} = 1$.

Identify the ordered pairs of the following:

Center:

Vertices:

Co-Vertices:

Foci:

- 14. What is the equation for an ellipse with vertices (-7, -3), (13, -3) and foci (-5, -3), (11, -3)?
- 15. Write an equation, in standard form, for the ellipse with the given characteristics: foci (-6, 9), (-6, -3); length of major axis is 20.

16. Write the equation of a circle with a center located at (3, -2) and a radius 11 units long.