For questions 1-3, find the domain and range of each function given.

$$1. f(x) = \frac{1}{4}x^{-3}$$

2.
$$f(x) = (\frac{1}{3})^{x-3} + 3$$

3.
$$f(x) = \ln(x+5) - 4$$

4. In 2008, the deer population in a certain area was 800. The number of deer increases exponentially at a rate of 7% per year. During what year will the population triple?

5. Find the balance in an account at the end of 8 years if \$6000 is invested at an interest rate of 4.2% that is compounded continuously.

6. Write
$$2^{-3} = \frac{1}{8}$$
 in logarithmic form.

7. Evaluate
$$\log_9 \frac{1}{81}$$
.

8. Condense
$$\ln 17 - 2 \ln x - 3 \ln y$$

9. Condense
$$2 \log x - \log 3$$
.

10. Expand
$$3 \log_9 \frac{81x^2}{y^5}$$

11. Which is the correct expansion of $\log_3 \frac{6x^2}{4v^3}$?

$$\mathbf{A} \log_3 6 - \log_3 4 - \log_3 x - \log_3 y$$

$$\mathbf{C} \log_3 6 + 2 \log_3 x - \log_3 4 + 3 \log_3 y$$

B
$$\log_3 6 + 2 \log_3 x - [\log_3 4 + 3 \log_3 y]$$

D $2 \log_3 6x - 3 \log_3 4y$

For 12 - 18, Solve the equation. Round to the nearest hundredth when necessary.

12.
$$4^{x-2} = 3$$

13.
$$\log_4 x^2 + \log_4 5 = \log_4 125$$

14.
$$e^{4x} = 98.6$$

15.
$$ln x + ln(x + 2) = ln 35$$

16.
$$3\ln(x-7) = 41$$

17.
$$\log_6(2x) + \log_6(x-2) = 1$$

18.
$$\ln x + \ln(x - 4) = \ln 12$$

19. The table below shows the population for a given bacteria colony.

Time (days)	0	4	8	12	16
Population (thousands)	87	112	135	173	224

Let x represent the number of days and let y represent the population in thousands. Find an exponential regression equation for the data. Round to three decimal places.

Part Two: Non- Calculator

$$e^1 \approx 2.7, e^{-1} \approx .4$$

20. Which describes the end behavior of $f(x) = 4x^3 - 5x^2 + 2x + 3$?

A
$$\lim_{x \to -\infty} f(x) = \infty$$
, $\lim_{x \to \infty} f(x) = \infty$

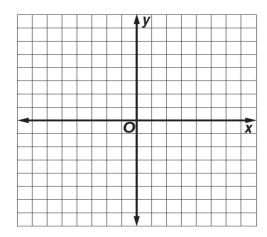
B
$$\lim_{x \to -\infty} f(x) = -\infty$$
, $\lim_{x \to \infty} f(x) = \infty$

$$\mathbf{A} \lim_{x \to -\infty} f(x) = \infty, \lim_{x \to \infty} f(x) = \infty$$

$$\mathbf{B} \lim_{x \to -\infty} f(x) = -\infty, \lim_{x \to \infty} f(x) = \infty$$

$$\mathbf{C} \lim_{x \to -\infty} f(x) = -\infty, \lim_{x \to \infty} f(x) = -\infty$$

$$\mathbf{D} \lim_{x \to -\infty} f(x) = \infty, \lim_{x \to \infty} f(x) = -\infty$$

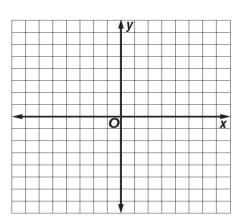

D
$$\lim_{x \to \infty} f(x) = \infty$$
, $\lim_{x \to \infty} f(x) = -\infty$

21. What are the horizontal and vertical asymptotes of $f(x) = \frac{x^2 - 4}{x^2 - 9}$?

22. Given $f(x) = e^x$ and $g(x) = 2e^{x-2}$, describe the transformations from the parent function.

For graphs: graph the function (include asymptotes) state the domain, range, asymptote equation, and end behavior.

23.
$$f(x) = ln(x-2)$$

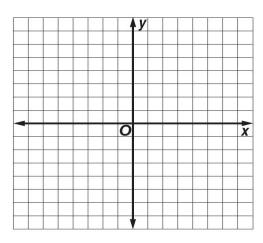

Domain: Decreasing:

Range: Increasing:

Any intercepts: Asymptote Equation:

End Behavior:

25.
$$f(x) = e^{x-1} + 2$$

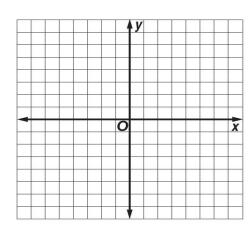

Domain: Decreasing:

Range: Increasing:

Any intercepts: Asymptote Equation:

End Behavior:

24. $f(x) = 3\left(\frac{1}{2}\right)^{x}$


Domain: Decreasing:

Range: Increasing:

Any intercepts: Asymptote Equation:

End Behavior:

$$26. f(x) = -\ln(x+1) + 3$$

Domain: Decreasing:

Range: Increasing:

Any intercepts: Asymptote Equation:

End Behavior: