# Unit 6 Part 1

(9.1, 9.3 & 9.2)

# Algebra 1

Name:\_\_\_\_\_

Determine the a) whether the graph of the function opens up or down, b) the x-intercepts and c) the axis of symmetry A.o.S.

1) 
$$y = -3(x+2)(x+8)$$

2) 
$$y = \frac{3}{8}(x-1)(x+9)$$

c) 
$$x =$$

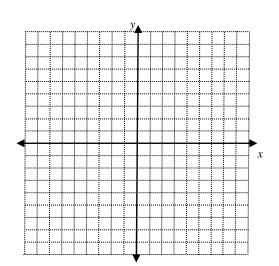
3) 
$$y = 5(x - 5)(x - 7)$$

5) 
$$y = x^2 + 7x + 6$$

7) 
$$f(x) = -3x^2 - 6x + 9$$

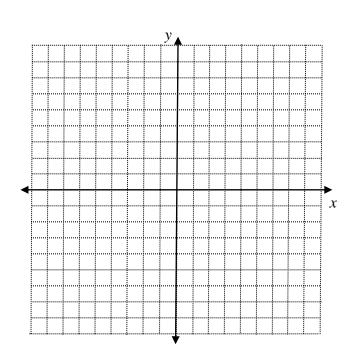
Graph the quadratic function:

9) 
$$y = \frac{1}{2}(x-5)(x+3)$$


c) 
$$x =$$

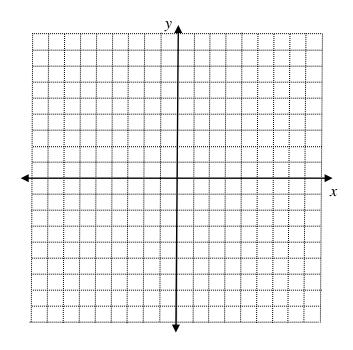
4) 
$$y = (x + 1)(x + 4)$$

6) 
$$g(x) = 4x^2 + 12x + 8$$

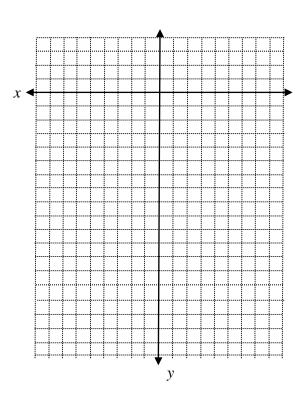

8) 
$$h(x) = 2x^2 + 11x - 6$$

10) 
$$f(x) = -x^2 + 8x - 12$$




1) 
$$y = -2(x-3)(x+1)$$

2) 
$$f(x) = x^2 - 2x - 15$$




3) 
$$y = (x+4)(x-1)$$

4) 
$$y = 2x^2 + 4x - 30$$



HINT: You may need to change the scale of the graph



### 9.1 Standard Form

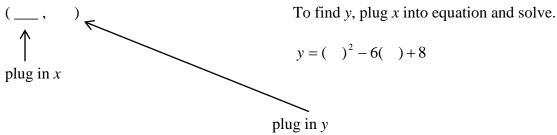
1) Sketch a graph of the function  $y = x^2 - 6x + 8$ .

c =

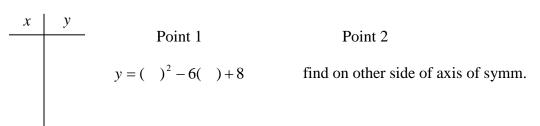
**Step 1:** Put in S.F. & identify the a, b and c.

b =

The parabola:


circle one opens up opens down

Step 2: Plug into line of symmetry formula,  $x = \frac{-b}{2a}$ . (be sure to graph the vertical line)


*x* = \_\_\_\_\_

a =

**Step 3:** Find the vertex (find the y).



**Step 4:** Plot vertex and create an x - y table. Pick one x value to the left and right of the vertex. Specifically choose values to the left and right of the 'x' value.



**Step 5:** Plot the points you just found and connect the points to make a parabola.



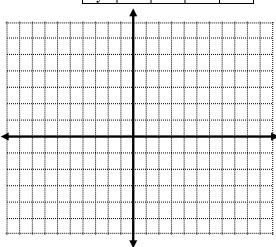
### NOTE:

Rewriting the equation in intercept form first may be an easier approach.

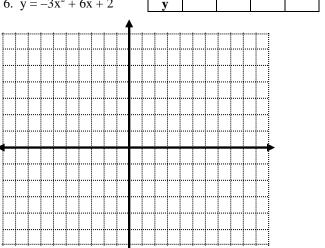
### 9.1 Homework Standard Form (day 2)

Tell whether the graph opens up or down. Write an equation of the axis of symmetry.

1. 
$$y = x^2 + 4x - 1$$


2. 
$$y = 3x^2 + 8x - 6$$

3. 
$$y = -x^2 - 4x + 2$$

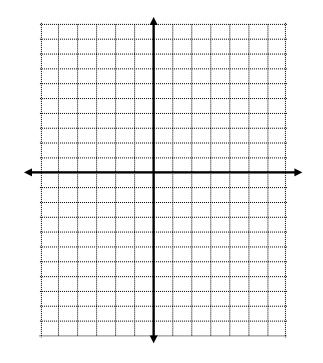

4. 
$$y = -x^2 + 4$$

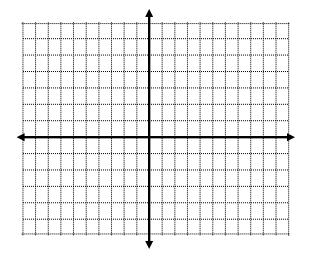
Graph the following functions. Label the vertex.

$$5. \ \mathbf{y} = -3\mathbf{x}^2 \qquad \mathbf{y}$$



6. 
$$y = -3x^2 + 6x + 2$$





7. 
$$y = x^2 - 2x - 8$$

| X |  |  |
|---|--|--|
| y |  |  |

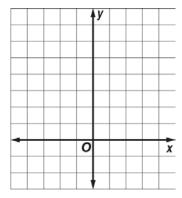
8. 
$$y = 3x^2 - 6x + 1$$

| X |  |  |
|---|--|--|
| y |  |  |

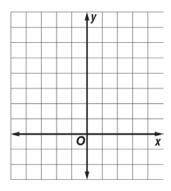




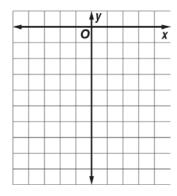
Find the vertex, the equation of the axis of symmetry, and the *y*-intercept of the graph of each function.


1. 
$$y = 2x^2 - 8x + 6$$

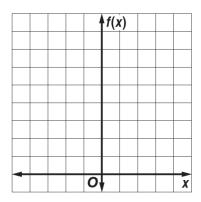
**2.** 
$$y = x^2 + 4x + 6$$


$$3. y = -3x^2 - 6x + 3$$

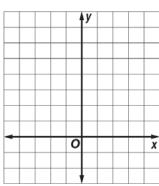
Graph the quadratic equations using the standard form approach.


**4.** 
$$y = x^2 + 2$$



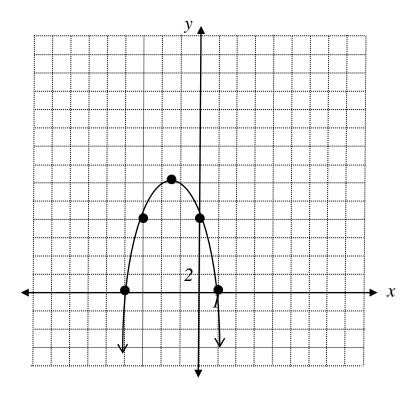

**6.** 
$$y = x^2 - 3x + 2$$




**5.** 
$$y = -x^2 - 4$$



$$7. f(x) = -2x^2 - 4x + 6$$




**8.** Rewrite the following quadratic function from standard form to intercept form. Then, graph the function.  $y = x^2 - 3x + 2$ 



9. How do you distinguish between intercept form and standard form for quadratic functions?

Use the graph below to answer the following questions:



10. Which of the following is the Axis of Symmetry?

a) 
$$x = -4$$

b) 
$$x = -2$$

c) 
$$x = -1.5$$

d) 
$$x = 1$$

e) 
$$x = 2$$

- 11. True or False: The parabola has a maximum, not a minimum.
- 12. Which of the following is the y-intercept of the function?

13. What is the vertex of this quadratic?

14. Which equation below *could* be the quadratic graphed?

a) 
$$y = a(x + 1)(x - 4)$$

b) 
$$y = a(x-1)(x+4)$$
 c)  $y = x^2 + 5x + 10$ 

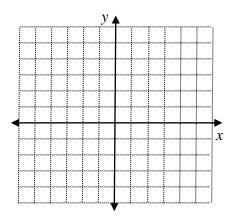
c) 
$$y = x^2 + 5x + 10$$

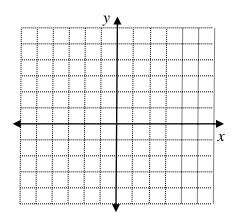
d) 
$$y = -3x^2 + 2x + 6$$

# 9.1 Graphing using Vertex Form

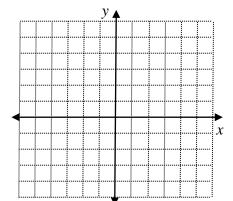
For problems 1-3, identify the **a**) whether the parabola opens up or down, **b**) vertex and **c**) axis of symmetry.

1) 
$$y = 3(x-2)^2 + 1$$

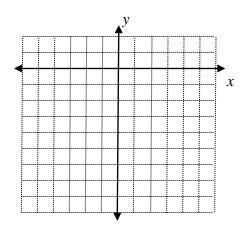

$$2) y = (x + 16)^2 + 20$$


3) 
$$y = -2(x+3)^2 - 6$$

Graph the quadratic functions below using vertex form. 4)  $y = (x-1)^2 + 3$ 


4) 
$$y = (x-1)^2 + 3$$

5) 
$$y = (x+2)^2 - 1$$






6) 
$$y = -(x-2)^2 - 1$$



7) 
$$y = -3(x-1)^2 - 4$$



# 9.1 Graphing ALL forms of quadratics

Given the equations below, identify  $\mathbf{a}$ ) which form it is in,  $\mathbf{b}$ ) whether it opens up or down  $\mathbf{c}$ ) the Axis of Symmetry,  $\mathbf{d}$ ) the vertex.

1. 
$$y = 2(x+6)^2 - 1$$

2. 
$$y = -x^2 + 5$$

3. 
$$h(x) = (x + 3)(x - 7)$$

a)

a)

a)

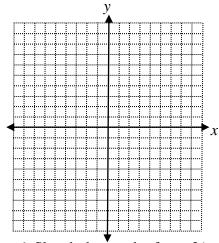
b)

b)

b)

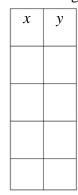
c)

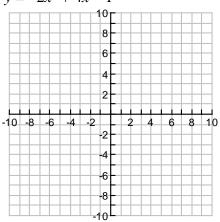
c)


٠,

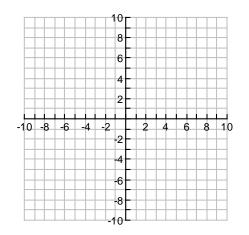
d)

d)


c)d)

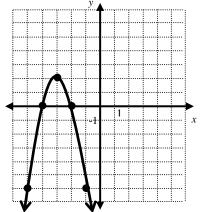

4. Sketch the graph of  $g(x) = x^2 + 4x - 5$ 






5. Sketch the graph of:  $y = -2x^2 + 4x - 1$ 






6. Sketch the graph of:  $y = 2(x-2)^2 + 4$ 



| $\boldsymbol{\mathcal{X}}$ |  |  |  |
|----------------------------|--|--|--|
| у                          |  |  |  |

7. What is the equation of the graph below?



- a)  $y = -2(x+3)^2 + 2$
- b)  $y = -2x^2 12x 16$
- c) y = -2(x+4)(x+2)
- d) All (answers a-c)
- e) none of these

# **Graphing Quadratics Review**

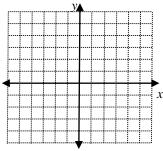
Write the quadratic function in standard form. Determine whether the graph of the function opens up or down.

1. 
$$y = 3 - 2x - x^2$$

$$2. y = 3x + 3x^2 - 4$$

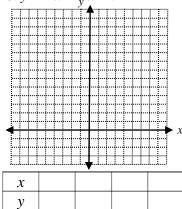
3. 
$$y = -5 - 4x^2$$

Find the vertex and axis of symmetry of the parabola.

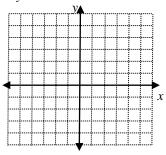

4. 
$$y = (x-4)^2 + 8$$

5. 
$$y = -3x^2 + x$$

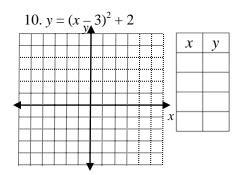
6. 
$$y = (x + 6)(x + 1)$$


# For 7-15, graph the quadratic function.

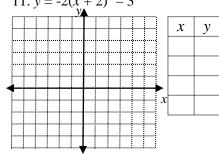
7. 
$$y = x^2 + 6x + 5$$



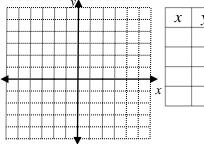

| х |  |  |
|---|--|--|
| y |  |  |


8. 
$$y = -2x^2 - 4x + 7$$

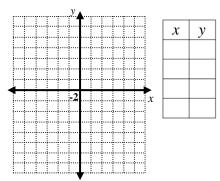



9. 
$$y = x^2 + 1$$

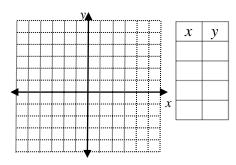



| x |  |  |
|---|--|--|
| у |  |  |

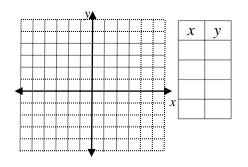



11. 
$$y = -2(x + 2)^2 - 3$$




12. 
$$y = (x-2)^2 - 5$$




13. 
$$y = (x + 3)(x - 5)$$



14. 
$$y = -2(x - 2)(x - 4)$$



15. 
$$y = -3x(x+2)$$



# **Factoring review!**

16. Factor: 
$$x^2 + 4x - 21$$

17. Factor: 
$$x^2 - 10x + 24$$

18. Solve: 
$$r^2 - 49 = 0$$

19. Solve: 
$$-15 = x^2 + 8x$$

20. Factor: 
$$3x^2 - 8x + 5 = 0$$

21. Solve: 
$$8m^2 + 8m + 2 = 0$$

**Graphing Quadratic Functions** 

|                                                                                                                                                                                                         | Oraphing Quadratic Functions                                                                                                                | T                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Intercept Form                                                                                                                                                                                          | Standard Form                                                                                                                               | Vertex Form                                                                                                                                    |
| y = a(x - p)(x - q)                                                                                                                                                                                     | $y = ax^2 + bx + c$                                                                                                                         | $y = a(x - h)^2 + k$                                                                                                                           |
| <ul> <li>Obtaining Ordered Pairs</li> <li>The x-intercepts are p and q.</li> <li>The axis of symmetry is half-way between (p, 0) and (q, 0).</li> <li>Plug back in for y value (the vertex!)</li> </ul> | Obtaining Ordered Pairs  Use a.o.s. for x value  Plug back in for y value (the vertex!)  Make a table to graph {Go L & R}  y-intercept is c | <ul> <li>Obtaining Ordered Pairs</li> <li>The vertex is (h, k). {opposite, same}</li> <li>The axis of symmetry is x = h. {opposite}</li> </ul> |
| $y = \frac{1}{2}(x-3)(x+1)$                                                                                                                                                                             | $y = 2x^2 - 8x + 6$                                                                                                                         | $y = 2(x-1)^2 + 3$                                                                                                                             |
|                                                                                                                                                                                                         | $y = 2x^2 - 8x + 6$ $y = 2(x - 1)^2 + 3$                                                                                                    |                                                                                                                                                |
| NOTES:                                                                                                                                                                                                  | NOTES:                                                                                                                                      | NOTES:                                                                                                                                         |

Describe how the graph of each function is related to the graph of  $f(x) = x^2$  {translations, reflections, dilations}

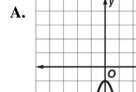
1. 
$$g(x) = (10 + x)^2$$

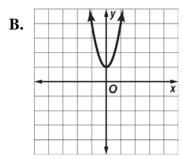
**2.** 
$$g(x) = -\frac{2}{5} + x^2$$

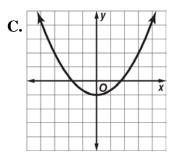
**3.** 
$$g(x) = 9 - x^2$$

**4.** 
$$g(x) = 2x^2 + 2$$

**5.** 
$$g(x) = -\frac{3}{4}x^2 - \frac{1}{2}$$


**6.** 
$$g(x) = -3(x+4)^2$$


Match each equation to its graph.


**7.** 
$$y = -3x^2 - 1$$

**8.** 
$$y = \frac{1}{3}x^2 - 1$$

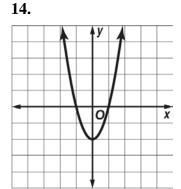
**9.** 
$$y = 3x^2 + 1$$



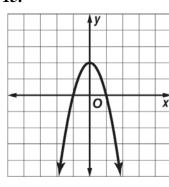




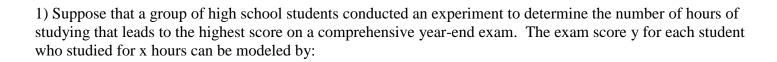
List the functions in order from the most vertically stretched to the least vertically stretched graph.


**10.** 
$$f(x) = 3x^2$$
,  $g(x) = \frac{1}{2}x^2$ ,  $h(x) = -2x^2$ 

**11.** 
$$f(x) = \frac{1}{2}x^2$$
,  $g(x) = -\frac{1}{6}x^2$ ,  $h(x) = 4x^2$ 


Find the domain and range.

**12.** 
$$g(x) = -x^2 + 3$$


**13.** 
$$g(x) = 4(x-1)^2$$







# 9.3Application Example



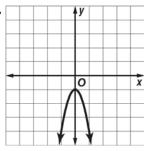
$$y = -0.853x^2 + 17.48x + 6.923$$

Which amount of studying produced the highest score on the exam?

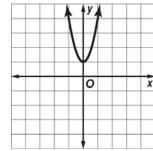
What is the highest score the model predicts?

2) Jason jumped off of a cliff into the ocean in Acapulco while vacationing with some friends. His height as a function of time could be modeled by the function  $h(t) = -16\left(t - \frac{1}{2}\right)^2 + 484$ . Jason hit the water after how many seconds?

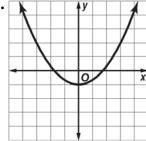
1. For the following quadratics, describe all shifts/transformations from the parent graph of  $y = x^2$ 


a) 
$$y = 4(x-4)^2 + 4$$

b) 
$$y = -3(x+3)^2 - 3$$


c) 
$$y = -\frac{1}{5}(x-5)^2 - 5$$

2. Match each equation to its graph.


A.



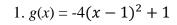
B.

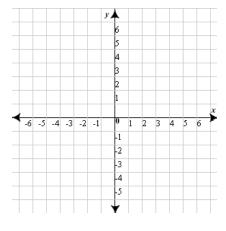


C.



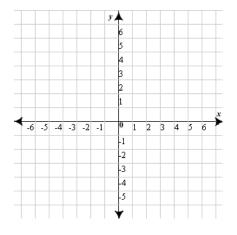
**1.** 
$$y = -3x^2 - 1$$

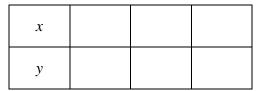

**2.** 
$$y = \frac{1}{3}x^2 - 1$$


**3.** 
$$y = 3x^2 + 1$$

3. Graph the following and then answer




- b) Axis of Symmetry
- c) Domain and Range
- d) y-intercept






| х |  |  |
|---|--|--|
| у |  |  |

$$2. f(x) = 2(x+3)^2 - 2$$





4. Given the equations in vertex form, write the equations in both standard form and factored form

a) 
$$y = 2(x+2)^2 - 2$$

b) 
$$y = -(x+3)^2 + 1$$

5. Find the coordinates of the vertex, the axis of symmetry, roots, and state which form the equation is in for the following:

a. 
$$y = -2x^2 + 3x - 1$$

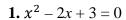
b. 
$$y = (x-3)(x+5)$$

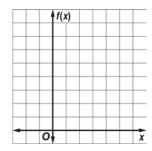
c. 
$$y = (x-5)^2 + 1$$

6. Determine the range of the following:

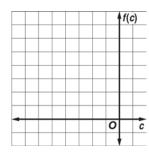
a) 
$$y = 3x^2 - 12x + 1$$

b) 
$$y = -2(x+1)(x+2)$$


c) 
$$y = -\frac{2}{3}(x+3)^2 - 4$$

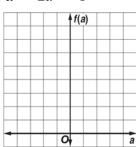

- 7. The flight of a basketball is given by the equation  $h(t) = -3t^2 + 7t + 6$ , where h(t) represents the height of the ball and t represents seconds.
  - a) How high does this shot go?
  - b) How long will the ball be in the air?

# Practice

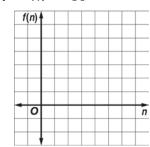

# 9-2 Solving Quadratic Equations by Graphing

## Solve each equation by graphing.



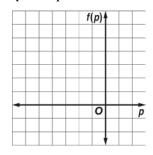



**2.** 
$$c^2 + 6c + 8 = 0$$

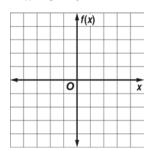



Follow this QR code for videos on how to perform each one of these problems.

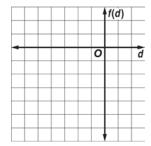
3. 
$$a^2 - 2a = -1$$



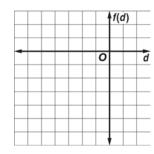

**4.** 
$$n^2 - 7n = -10$$




# Solve each equation by graphing. If integral roots cannot be found, estimate the roots to the nearest tenth.


**5.** 
$$p^2 + 4p + 2 = 0$$



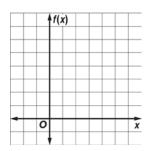

**6.** 
$$x^2 + x - 3 = 0$$



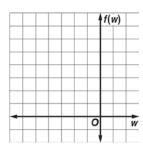
**7.** 
$$d^2 + 6d = -3$$



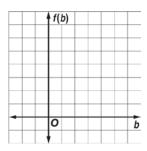
**8.** 
$$h^2 + 1 = 4h$$




# Homework

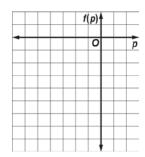

# 9-2 Solving Quadratic Equations by Graphing

Solve each equation by graphing.


1. 
$$x^2 - 5x + 6 = 0$$



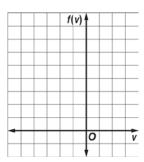
**2.** 
$$w^2 + 6w + 9 = 0$$



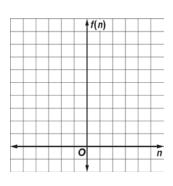

**3.** 
$$b^2 - 3b + 4 = 0$$




Solve each equation by graphing. If integral roots cannot be found, estimate the roots to the nearest tenth.

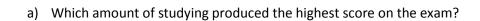

**4.** 
$$p^2 + 4p = 3$$

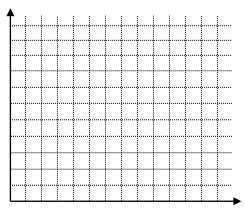



5. 
$$2m^2 + 5 = 10m$$



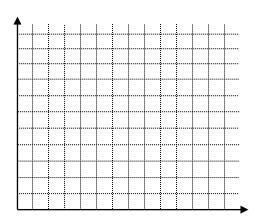
**6.** 
$$2v^2 + 8v = -7$$





- 7. Two numbers have a sum of 2 and a product of -8. The quadratic equation  $-n^2 + 2n + 8 = 0$  can be used to determine the two numbers.
  - **a.** Graph the related function  $f(n) = -n^2 + 2n + 8$  and determine its *x*-intercepts.
  - **b.** What are the two numbers?

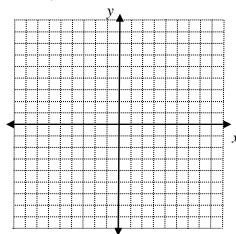


1) Suppose that a group of high school students conducted an experiment to determine the number of hours of studying that leads to the highest score on a comprehensive year-end exam. The exam score y for each student who studied for x hours can be modeled by:

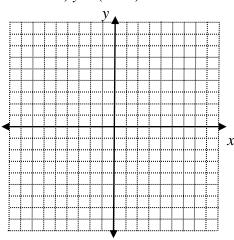

$$y = -0.853x^2 + 17.48x + 6.923$$



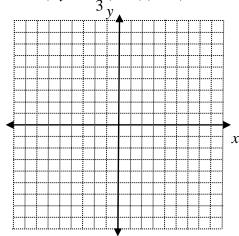



- b) What is the highest score the model predicts?
- c) According to the model, how many hours would yield a score of 0?

- 2) Jason jumped off of a cliff into the ocean in Acapulco while vacationing with some friends. His height as a function of time could be modeled by the function  $h(t) = -16\left(t \frac{1}{2}\right)^2 + 484$ .
  - a) At what height did Jason jump from?
  - b) Jason hit the water after how many seconds?




For 1-3, solve by graphing:


1) 
$$y = -2x^2 + 8x - 5$$



2) 
$$y = (x+3)^2 + 1$$



3) 
$$y = -\frac{1}{3}(x+1)(x-5)$$



For problems 4-6, use the graphs that correspond above. Determine the transformations.

4) see #1 above

5) see #2 above

6) see #3 above

R:

R:

R: T:

T:

T:

D:

D:

D:

Domain:

Domain:

Domain:

Range:

Range:

Range:

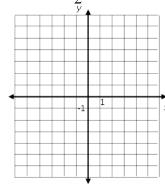
For 7 - 9, factor the expression:

7) 
$$x^2 - x - 20$$

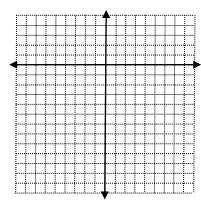
8) 
$$9x^2 + 6x + 1$$

9) 
$$3u^2 - 108$$

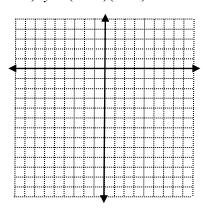
# Unit 6 (Chapter 9) Part 1 Review


| 1) What is the vertex                                                         | of the graph of             | $y = \frac{1}{4}(x-2)^2 + 6$ ?     |                             |                              |
|-------------------------------------------------------------------------------|-----------------------------|------------------------------------|-----------------------------|------------------------------|
| a) (0,7)                                                                      | b) (2,6)                    | c) (-2,-6)                         | d) (4,7)                    | e) (-2,6)                    |
| 2) What are the doma                                                          | ain and range of            | f the function in problem 1?       |                             |                              |
| a) D: All real #s<br>R: y > 7                                                 | b) D: All real R: $y \ge 6$ | #s c) D: All real #s R: $y \le -6$ | d) D: $x > 4$<br>R: $y > 7$ | e) D: $x > -2$<br>R: $y > 6$ |
| 3) What is the vertex                                                         | of the graph of             | y = -4(x-1)(x+5)?                  |                             |                              |
| a) Maximum at (-2, 3                                                          | 36)                         | b) Maximum at (2,-28)              | c) Minin                    | num at (-1,5)                |
| d) Minimum (-2, 36)                                                           |                             | e) Minimum (3,16)                  |                             |                              |
| 4) What are the zero                                                          | os of the function          | n in problem 3?                    |                             |                              |
| a) -5 & 1                                                                     | b) -1 & 5                   | c) -4, -1, 5                       | d) 0, -5, 2                 | e) -2                        |
| 5) What is the vertex                                                         | of the graph of             | $5y = 3x^2 - 12x + 13?$            |                             |                              |
| a) (-2,1)                                                                     | b) (2,1)                    | c) (-2,-1)                         | d) (0,13)                   | e) (2, -1)                   |
| 6) Which best descri                                                          | bes the dilation            | from the function in probler       | m 5?                        |                              |
| a) Vertical stretch                                                           | b) Vertical compression     | c) No change                       | d) Horizontal s             | stretch e) Reflection        |
| 7) What is the <i>y</i> -inter                                                | rcept of the fund           | etion in problem 5?                |                             |                              |
| a) (0,-12)                                                                    | b) (0, -2)                  | c) (0, 2)                          | d) (0, 3)                   | e) (0, 13)                   |
| 8) What is the axis of symmetry of the graph of $y = \frac{1}{2}(x+2)(x-6)$ ? |                             |                                    |                             |                              |
| a) $x = 6$                                                                    | b) $x = -2$                 | c) $x = 2$                         | d) $x = -6$                 | e) $x = -12$                 |

- 9) What is the translation that occurs in the function in problem 8?
- a) Right 2 Down 8
- b) Left 2 Down 8
- c) Right 2 Up 8
- d) Left 2
- e) Left 6


- 10) What is the standard form of the quadratic function:  $y = -5(x + 2)^2 + 18$ ?
- a)  $y = -5x^2 20x 2$
- b)  $y = 5x^2 20x 2$
- c)  $y = -5x^2 20x + 2$

- d)  $y = -5x^2 + 20x 2$
- e)  $y = -5x^2 + 20x + 2$
- 11) A golf ball is hit from ground level into the air following the path of the equation  $y = -0.1x^2 + 10x$  (Assume the *x*-axis is ground level.)
  - **a)** If you assume the point at which the golf ball is hit is (0,0) at what point does the ball come down and hit the ground?
  - **b**) If you assume all points to be in terms of yards, how far was the ball from the golfer when it hit the ground?
  - c) At what point did the golf ball reach its maximum height?
  - d) What was the maximum height of the golf ball in terms of yards?
- For 12 14, solve by graphing.


12) 
$$y = -\frac{1}{2}(x+3)^2 + 2$$



13) 
$$y = 2x^2 + 4x - 6$$



14) 
$$y = (x+5)(x-1)$$

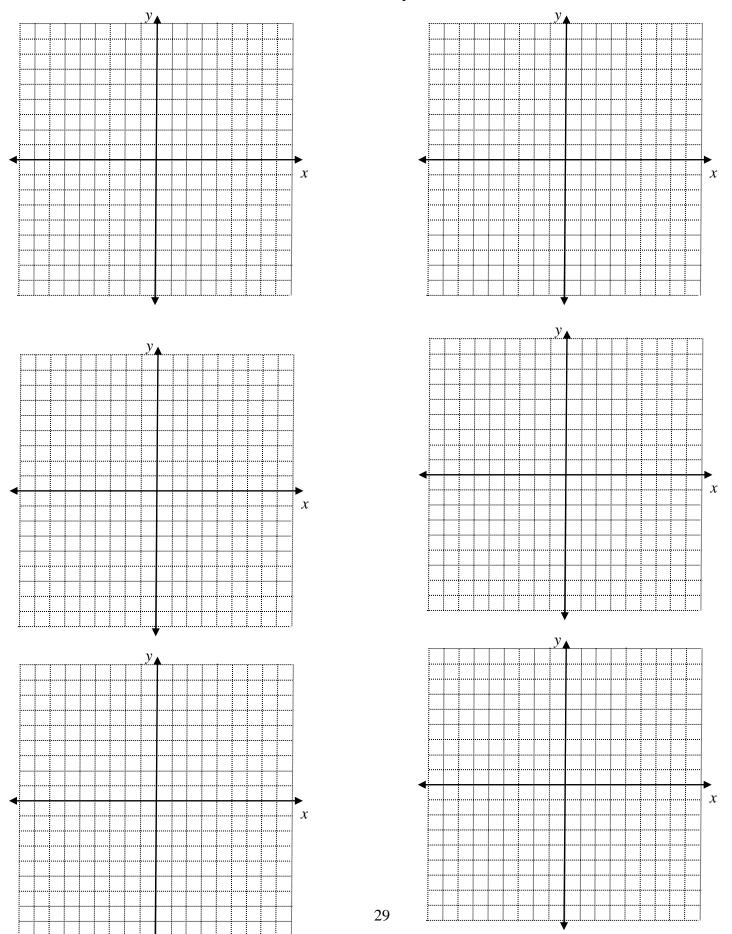


# **GRAPHING CALCULATOR-Basic Functions**

| Question                                                                                                        | Response | Calc function purpose |
|-----------------------------------------------------------------------------------------------------------------|----------|-----------------------|
| 1. Add: -20 + 60.75                                                                                             | 1.       | purpose<br>- Vs –     |
| 2. Subtract: -50.6 – 30.4 – 70.001                                                                              | 2.       | - Vs -                |
| 3. Multiply: 20 · 120                                                                                           | 3.       | X vs·                 |
| 4. Divide 168 ÷ 40                                                                                              | 4.       | ÷ vs. /               |
| 5. Convert your answer from # 4 to a fraction                                                                   | 5.       | Frac                  |
| 6. Add $\frac{1}{3}$ to your solution from #5. Write it as a fraction.                                          | 6.       | Ans                   |
| 7. Add $-\frac{3}{4} + \frac{21}{24}$ . Answer with a fraction                                                  | 7.       | Parenthesis           |
| 8. Go back to your key strokes for #2 and insert a positive instead of a negative for 30.4. What is the result? | 8.       | Entry button          |
| 9. Take your answer and square it.                                                                              | 9.       | Ans & <sup>2</sup>    |
| 10. Whoops, I meant to say cube it. Use entry to fix it!                                                        | 10.      | ^                     |
| 11. Add $\pi$ and $\frac{1}{3}$ to that answer.                                                                 | 11.      | π                     |

# **GRAPHING CALCULATOR - Graphing**

|    | Reset your graph                                                 |    |                                 |  |
|----|------------------------------------------------------------------|----|---------------------------------|--|
| 1. | Graph: $y = -3x - 2$                                             | 1. | $y = \& x,t,\Theta,n$           |  |
| 2. | What is the output if $x = 10$ ?                                 | 2. | table                           |  |
| 3. | Graph: <i>y</i> = -3 <i>x</i> <sup>2</sup> – 2                   | 3. | More input                      |  |
| 4. | What is the output if $x = 10$ ?                                 | 4. | table                           |  |
|    | Graph them at the same time. What points do they have in common? | 5. | Y <sub>1</sub> & Y <sub>2</sub> |  |
| 6. | Graph: $y = 4(x - 8)(x + 12)$ .                                  | 6. | Zoom                            |  |
| 7. | Graph: $y + 8 = 50x^2 + 6x$                                      | 7. | Zoom                            |  |


| Cornell Notes Lecture, reading/chapter/novel/article         | Name:          |
|--------------------------------------------------------------|----------------|
| during class, power point, movies (if need to collect info.) | Class: Period: |
| Topic:                                                       | Date:          |
| <b>Essential Question:</b>                                   |                |
|                                                              |                |
| Questions/Main Ideas:                                        | Notes:         |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
| Summary:                                                     |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |

| Cornell Notes Lecture, reading/chapter/novel/article         | Name:          |
|--------------------------------------------------------------|----------------|
| during class, power point, movies (if need to collect info.) | Class: Period: |
| Topic:                                                       | Date:          |
| <b>Essential Question:</b>                                   |                |
|                                                              |                |
| Questions/Main Ideas:                                        | Notes:         |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
| Summary:                                                     |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |
|                                                              |                |

| Cornell Notes Lecture, reading/chapter/novel/article         | Name:          |  |  |
|--------------------------------------------------------------|----------------|--|--|
| during class, power point, movies (if need to collect info.) | Class: Period: |  |  |
| Topic:                                                       | Date:          |  |  |
| Essential Question:                                          |                |  |  |
|                                                              |                |  |  |
| Questions/Main Ideas:                                        | Notes:         |  |  |
|                                                              |                |  |  |
|                                                              |                |  |  |
|                                                              |                |  |  |
|                                                              |                |  |  |
|                                                              |                |  |  |
|                                                              |                |  |  |
|                                                              |                |  |  |
|                                                              |                |  |  |
|                                                              |                |  |  |
|                                                              |                |  |  |
|                                                              |                |  |  |
|                                                              |                |  |  |
|                                                              |                |  |  |
|                                                              |                |  |  |
|                                                              |                |  |  |
|                                                              |                |  |  |
|                                                              |                |  |  |
|                                                              |                |  |  |
|                                                              |                |  |  |
|                                                              |                |  |  |
|                                                              |                |  |  |
|                                                              |                |  |  |
| Summary:                                                     |                |  |  |
|                                                              |                |  |  |
|                                                              |                |  |  |
|                                                              |                |  |  |
|                                                              |                |  |  |

| Cornell Notes Lecture, reading/chapter/novel/article         | Name:  | Name:   |  |  |
|--------------------------------------------------------------|--------|---------|--|--|
| during class, power point, movies (if need to collect info.) |        | Period: |  |  |
| Topic:                                                       |        | Date:   |  |  |
| <b>Essential Question:</b>                                   |        |         |  |  |
|                                                              |        |         |  |  |
| Questions/Main Ideas:                                        | Notes: | Notes:  |  |  |
|                                                              |        |         |  |  |
|                                                              |        |         |  |  |
|                                                              |        |         |  |  |
|                                                              |        |         |  |  |
|                                                              |        | _       |  |  |
|                                                              |        |         |  |  |
|                                                              |        |         |  |  |
|                                                              |        |         |  |  |
|                                                              |        |         |  |  |
|                                                              |        |         |  |  |
|                                                              |        |         |  |  |
|                                                              |        |         |  |  |
|                                                              |        |         |  |  |
|                                                              |        |         |  |  |
|                                                              |        |         |  |  |
|                                                              |        |         |  |  |
|                                                              |        |         |  |  |
|                                                              |        |         |  |  |
|                                                              |        |         |  |  |
|                                                              |        |         |  |  |
|                                                              |        |         |  |  |
| Summary:                                                     |        |         |  |  |
| Sammer J.                                                    |        |         |  |  |
|                                                              |        |         |  |  |
|                                                              |        |         |  |  |
|                                                              |        |         |  |  |

# Extra Graphs



Add on problems or addition examples:

Add on problems or addition examples:

Add on problems or addition examples: