To earn credit, you must have the correct answer with all work shown.

1. Write the following series using summation notation: 5 - 6 - 17 - 28 - 39 - 50 - 61 -72.

1.____

2. Write a rule for the *n*th term of the **arithmetic** sequence: $a_7 = 12$, $a_{37} = 222$

2._____

3. Find a_{39} for the **arithmetic** sequence: 7, 11, 15, 19,

J._____

4. Find S_{39} for the **arithmetic** series $7 + 11 + 15 + 19 + \dots$

.

5. Find *n* if $S_n = 10,437$ for the **arithmetic** series 7 + 11 + 15 + 19 + ...

j._____

6. Find the sum of the following infinite series, if possible: $\sum_{n=1}^{\infty} 15 \left(-\frac{12}{11} \right)^{n-1}$

6.____

7. Find the sum of the following infinite series, if possible: $\sum_{n=1}^{\infty} \frac{2}{5} \left(\frac{2}{7}\right)^{n-1}$

7._____

8. Find the sum of the first 12 terms of the **geometric** series: 2 - 8 + 32 - 128 + ...

8.

10. Write a rule for the *n*th term of the **geometric** sequence: $a_4 = 500$, $a_8 = 312,500$?

11. In a **geometric** sequence, $a_4 = -24$ and $a_7 = -192$. Find a_{14} .

12. In the **arithmetic** sequence $a_6 = 16$ and $a_{12} = 46$. Find a_{150} .

13. What term number is 756 in the sequence 405,414,423...756?

13.____

14. Find the common ratio of the infinite geometric series with the given sum and first term: $S = \frac{7}{8}$, $a_1 = \frac{3}{10}$

14.____

$$a_n = a_1 + (n-1)d$$

$$a_n = a_1 + (n-1)d$$

$$S_n = \frac{n}{2}(a_1 + a_n)$$

$$a_n = a_1(r)^{n-1}$$

$$S_n = a_1(\frac{1-r^n}{1-r})$$

$$S = \frac{a_1}{1-r}$$

$$a_n = a_1(r)^{n-1}$$

$$S_n = a_1(\frac{1-r^n}{1-r})$$

$$S = \frac{a_1}{1-r}$$