Expression vs. Equation Models

Toothpick Triangles

Variable expressions can be used to represent patterns and help solve problems. Consider the problem of creating triangles out of toothpicks shown below.

Figure 1

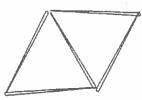


Figure 2

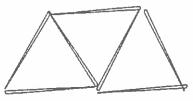
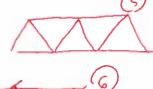


Figure 3


- 1. How many toothpicks does it take to create each figure?
- 3,4,5 2. How many toothpicks does it take to make up the perimeter of each image?
- 3. Sketch the next three figures in the pattern.

2 Th

4. Continue the pattern to complete the table.

Image Number	1	2	3	4	5	6	7	8	9	10
Number of toothpicks	3	5	7	9	t (13	15	17	19	21
Number of toothpicks in Perimeter	3	4	5	6	7	8	9	10	I_{I}	12

- 5. Let the variable *n* represent the figure number. Write an expression that can be used to find the number of toothpicks needed to create figure n. 20+1
- **To.** Let the variable *n* represent the figure number. Write an expression that can be used to find the number of toothpicks in the perimeter of figure n.

n+2

7. GEOMETRY The surface area of the side of a right cylinder can be found by multiplying twice the number π by the radius times the height. If a circular cylinder has radius r and height h, write an expression that represents the surface area of its side.