

Community Unit District 308 Math Scope & Sequence Fifth Grade

•Standards taught and assessed through end of unit assessments

		assessed thr						
Standards	Unit 1	Unit 2	Unit 3	Unit 4A	Unit 4B	Unit 5	Unit 6	Unit 7
Approximate Time Frames per Unit Module	2-3 wks	6-7 wks	5-6 wks	4-5 wks	3-4 wks	6-7 wks	2-3 wks	1-2 wks
	August	Sep – Mid Oct	Mid Oct- Nov	Dec - Mid Jan	Mid Jan- Mid Feb	Mid Feb- Mid April	Mid Apr- Mid May	May
My Math Chapters		Ch 2 (L.6-end)		Ch O (all)		Ch 10		
yau. captoro	Ch 1 (all)	Ch 3 (all)	Ch 5 (all)	Ch 8 (all)	Ob 10 (-II)	Ch 12	Ch 12	Ch 7
	Ch 2 (L. 1-5)	Ch 4 (all)	Ch 6 (all)	Ch 9 (all)	Ch 10 (all)	(L. 6- end)	(L 1-5)	(L. 5- end)
	0.1.2 (2 0)	Ch 7 (L. 1-4)	511 5 (a.i.)			Ch 11 (all)	(= : 0)	(2.0 01.0)
	0			(O A)				
Operations and Algebraic Thinking (OA) 5.OA.A Write and interpret numerical expressions.								
	OA.A Write	and interpret n	umerical ex	rpressions.				
5.OA.A.1 Use parentheses, brackets, or braces in numerical								
expressions, and evaluate expressions with these symbols.		•						
5.OA.A.2 Write simple numerical expressions that record								
calculations with numbers, and interpret numerical expressions								
without evaluating them. For example, express the calculation "add 8								
and 7, then multiply by 2" as 2 x (8 +7). Recognize that 3 x (18932 +								•
921) is three times as large as 18932 +921, without having to								
calculate the indicated sum or product.								
	A D A l		_	_				
	A.B Anaiyze	patterns and r	elationsnip	S.	•	•	•	
5.OA.B.3 Generate two numerical patterns using two given rules. Identify]]			1		1	İ
apparent relationships between corresponding terms. Form ordered pairs	1	1			1		1	1
consisting of corresponding terms from the two patterns, and graph the								
ordered pairs on a coordinate plane. For example, given the rule "Add 3"								•
and the starting number 0, and given the rule "Add 6" and the starting	1]			1		1	
number 0, generate terms in the resulting sequences, and observe that	1]		İ	İ
the terms in one sequence are twice the corresponding terms in the other	1]		İ	İ
sequence. Explain informally why this is so.								
	Number and	Operations in	Base Ten					
5.NI	3T.A Underst	and the place	value syste	m.				
5.NBT.A.1 Recognize that in a multi-digit number, a digit in one place								
represents 10 times as much as it represents in the place to its right and								
1/10 of what it represents in the place to its left.								
5.NBT.A.2 Explain patterns in the number of zeros of the product when								
multiplying a number by powers of 10, and explain patterns in the								
placement of the decimal point when a decimal is multiplied or divided by	•							
a power of 10. Use whole-number exponents to denote powers of 10.								
5.NBT.A.3a Read, write, and compare decimals to thousandths.					†		†	†
a) Read and write decimals to thousandths using base-ten numerals,								
number names, and expanded form, e.g., 347.392 = 3 x 100 + 4 x 10 + 7	•							
$\times 1 + 3 \times (1/10) + 9 \times (1/100) + 2 \times (1/1000)$.								
5.NBT.3b Read, write, and compare decimals to thousandths.					†		†	†
b) Compare two decimals to thousandths based on meanings of the digits								
in each place, using , =, and < symbols to record the results of	•							
comparisons.								
5.NBT.4 Use place value understanding to round decimals to any place.								
5.NB1.4 Ose place value understanding to round decimals to any place.			•					
5.NBT.B Perform operations	with multi-d	iait whole num	bers and w	ith decimals	to hundret	hs.		
5.NBT.B.5 Fluently multiply multi-digit whole numbers using the standard		_						
algorithm.	1	•]		İ	İ
5.NBT.B.6 Find whole-number quotients of whole numbers with up to	İ	İ			İ	İ	İ	İ
four-digit dividends and two-digit divisors, using strategies based on place	1	1			1		1	1
value, the properties of operations, and/or the relationship between	1	•			1		1	1
multiplication and division. Illustrate and explain the calculation by using	1	•			1		1	1
equations, rectangular arrays, and/or area models.	1]		İ	İ
5.NBT.B.7 Add, subtract, multiply, and divide decimals to hundredths,							<u> </u>	<u> </u>
using concrete models or drawings and strategies based on place value,	1]		İ	İ
properties of operations, and/or the relationship between addition, and	1		_]		İ	İ
subtraction; relate the strategy to a written method and explain the	1]		İ	İ
reasoning used.	1]		İ	İ
	Number and	Operations - I	ractions			1	•	
ENEA Has a make a				ubtract fra	tions			
5.NF.A Use equival	ent mactions	as a strategy t	o auu and s	SUDU ACT TEAC	uons.	1		
5.NF.A.1 Add and subtract fractions with unlike denominators (including	1	1			1		1	1
mixed numbers) by replacing given fractions with equivalent fractions in	1	1			1		1	1
such a way as to produce an equivalent sum or difference of fractions	1	1		•	1		1	1
with like denominators. For example, $2/3 + 5/4 = 8/12 + 15/12 = 23/12$ (In	1	1			1		1	1
general, a/b + c/d = (ad + bc)/bd.)	ļ	ļ						
5.NF.A.2 Solve word problems involving addition and subtraction of	1	1			1		1	1
fractions, referring to the same whole, including cases of unlike	1]			İ		1	1
denominators, e.g., by using visual fraction models or equations to	1]			İ		1	İ
represent the problem. Use benchmark fractions and number sense of	1]		•	•		İ	İ
fraction to estimate mentally and assess the reasonableness of answers.	1	1			1		1	1
For example, recognize an incorrect result 2/5 +1/2 = 3/7, by observing	1	1			1		1	1
that 3/7 < 1/2.	<u> </u>	<u> </u>	<u> </u>	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>

Community Unit District 308 Math Scope & Sequence Fifth Grade

•Standards taught and assessed through end of unit assessments

		assessed thr						
Standards	Unit 1	Unit 2	Unit 3	Unit 4A	Unit 4B	Unit 5	Unit 6	Unit 7
Approximate Time Frames per Unit Module	2-3 wks August	6-7 wks Sep – Mid Oct	5-6 wks Mid Oct- Nov	4-5 wks Dec - Mid Jan	3-4 wks Mid Jan- Mid Feb	6-7 wks Mid Feb- Mid April	2-3 wks Mid Apr- Mid May	1-2 wks May
My Math Chapters		Ch 2 (L.6-end)						
my main onapions	Ch 1 (all) Ch 2 (L. 1-5)	Ch 3 (all) Ch 4 (all) Ch 7 (L. 1-4)	Ch 5 (all) Ch 6 (all)	Ch 8 (all) Ch 9 (all)	Ch 10 (all)	Ch 12 (L. 6- end) Ch 11 (all)	Ch 12 (L 1-5)	Ch 7 (L. 5- end)
5.NF.B Apply and extend previous und	derstandings		on and divis	sion to mult	iply and div	ide fractions		
5.NF.B.3 Interpret a fraction as a division of the number by the								
denominator $(a/b = a \div b)$. Solve word problems involving division								
division of whole numbers leasting to answers in the form of fractions or								
mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret 3/4 as the result of dividing								
3 by 4, noting that 3/4 multiplied by 4 equals 3, and that when 3 wholes				•				
are shared equally among 4 people each person has a share of size 3/4.If								
9 people want to share a 50-pound sack of rice equally by weight, how								
many pounds of rice should each person get? Between what two whole numbers does your answer lie?								
5.NF.B.4a Apply and extend previous understandings of multiplication to								
multiply a fraction or a whole number by a fraction.								
a) Interpret a product (a/b) x q as a parts of a partition of q into b equal								
parts; equivalently, as the result of a sequence of operations $a \times q = b$. For example, use a visual fraction model to show $(2/3) \times 4 = 8/3$, and					•			
create a story context for this equation. Do the same with $(2/3) \times (4/5) =$								
8/15. (In general, $(a/b) \times (c/d) = ac/bd$.)								
5.NF.B.4b Apply and extend previous understandings of multiplication to multiply a fraction or a whole number by a fraction.								
b) Find the area of a rectangle with fractional side lengths by tiling it with								
unit squares of the appropriate unit fraction side lengths, and show that					•			
the area is the same as would be found by multiplying the side lengths.								
Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.								
5.NF.B.5a Interpret multiplication as scaling (resizing), by:								
a) Comparing the size of a product to the size of one factor on the					_			
basis of the size of the other factor, without performing the indicated multiplication.					•			
5.NF.B.5b Interpret multiplication as scaling (resizing), by: b) Explaining why multiplying a given number by a fraction greater than 1								
results in a product greater than the given number (recognizing								
multiplication by whole numbers greater than 1 as a fraction less than 1					•			
results in a product smaller than the given number; relating the principle								
of fraction equivalence $a/b = (nxa)/nxb$) to the effect of multiplying a/b by 1.								
5.NF.B6 Solve real world problems involving multiplication of fractions								
and mixed numbers, e.g., by using visual fraction models or equations to					•			
represent the problem. 5.NF.B7a Apply and extend previous understandings of division to divide								
unit fractions by whole numbers and whole numbers by unit fractions.								
a) Interpret division of a unit fraction by a non-zero whole number, and								
compute such quotients. For example, create a story context for (1/3) ÷					•			
4, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $(1/3) \div 4 =$								
1/12 because (1/12) x 4 = 1/3.								
5.NF.C.7b Apply and extend previous understandings of division to divide								
unit fractions by whole numbers and whole numbers by unit fractions. b) Interpret division of a whole number by a unit fraction, and compute								
b) interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div (1/5)$, and use					•			
visual fraction model to show the quotient. Use the relationship between								
multiplication and division to explain that $4 \div (1/5) = 20$ because 20 x								
(1/5) = 4. 5.NF.C.7c Apply and extend previous understandings of division to divide								
unit fractions by whole numbers and whole numbers by unit fractions.								
c) Solve real world problems involving division of unit fractions by non-								
zero whole numbers and division of whole numbers by unit fractions, e.g.,								
by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share								
1/2 lb of chocolate equally? How many 1/3- cup servings are in 2 cups of					_			
raisins?					•			
	<u> </u>			<u>l</u>	1			

Community Unit District 308 Math Scope & Sequence Fifth Grade

•Standards taught and assessed through end of unit assessments

		assessed thr				1125	11-2-1-7	11-2-7
Standards	Unit 1	Unit 2	Unit 3	Unit 4A	Unit 4B	Unit 5	Unit 6	Unit 7
Approximate Time Frames per Unit Module	2-3 wks	6-7 wks	5-6 wks	4-5 wks	3-4 wks	6-7 wks	2-3 wks	1-2 wks
	August	Sep – Mid	Mid Oct-	Dec -	Mid Jan-	Mid Feb-	Mid Apr-	May
		Oct	Nov	Mid Jan	Mid Feb	Mid April	Mid May	
My Math Chapters		Ch 2 (L.6-end)		Ch 8 (all)		Ch 12		
,	Ch 1 (all)	Ch 3 (all)	Ch 5 (all)	Ch 9 (all)	Ch 10 (all)	(L. 6- end)	Ch 12	Ch 7
	Ch 2 (L. 1-5)	Ch 4 (all)	Ch 6 (all)	CII 7 (all)			(L 1-5)	(L. 5- end)
		Ch 7 (L. 1-4)				Ch 11 (all)		
	Meas	surement & Da	a					
5.MD.A Convert like				surement s	vstem			
5.MD.A.1 Convert among different-sized standard measurement units within	I I Casar Cirici	l dines within t	givenine		yotom.	I	I	
a given measurement system (e.g., convert 5 cm to 0.05 m), and use thse								
conversions in solving multi-step, real world problems.								
	EMD D Donr	esent and inter	prot data					
	J.MD.B Repre	I and men	prei uaia.			1	1	
5.MD.B.2 Make a line plot to display a data set of measurements in								
fractions of a unit (1/2, ¼, 1/8). Use operations on fractions for this grade to solve problems involving information presented in line plots. <i>For</i>								
example, given different measurements of liquid in identical beakers, find						•		
the amount of liquid each beaker would contain if the total amount in all								
the beakers were redistributed equally.								
5.MD.C Geometric measurement: unders	stand concon	ts of volume a	nd rolato vo	dumo to mu	Itiplication :	and to addit	ion	
5.MD.C.3a Recognize volume as an attribute of sold figures and	l	S OF VOIGINE A	ina reiale VC	name to mu	lupiication	and to addit	1011.	
understand concepts of volume and measurement.	1			1	1			
a) A cube with side length 1 unit, called a "unit cube" is said to have "one						•		
cubic unit" of volume, and can be used to measure volume.								
5.MD.C.3b Recognize volume as an attribute of sold figures and								
understand concepts of volume and measurement.	1			1	1			
b) A solid figure which can be packed without gaps or overlaps using <i>n</i>	1					•		
unit cubes is said to have a volume of <i>n</i> cubic units.								
5.MD.C.4. Measure volumes by counting unit cubes, using cubic cm,								
cubic in, cubic ft, and improvised units.						•		
5.MD.C.5a Relate volume to the operations of multiplication and addition								
and solve real world mathematical problems involving volume.								
a) Find the volume of a right rectangular prism with whole-number side								
lengths by packing it with unit cubes, and show that the volume is the								
same as would be found by multiplying the edge lengths, equivalently by						•		
multiplying the height by the area of the base. Represent the threefold								
whole-number products as volumes, e.g., to represent the associative								
property of multiplication.								
5.MD.C.5b Relate volume to the operations of multiplication and addition								
and solve real world mathematical problems involving volume.								
b) Apply the formulas $V = I \times w \times h$ and $V = b \times h$ for rectangular prisms to						•		
find volumes of right rectangular prisms with whole-number edge lengths								
in the context of solving real world and mathematical problems.								
5.MD.C.5c Relate volume to the operations of multiplication and addition								
and solve real world mathematical problems involving volume.								
c) Recognize volume as additive. Find volumes of solid figures composed						•		
of two non-overlapping right rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real world								
problems.								
producino.	1	Coometry						
5040 1 11		Geometry	-1	-l	!! !!			
5.G.A Graph points on the c	coordinate pla	ane to solve re	ai-world an	a mathemat	ical problen	ns.	1	
5.GA1 Use a pair of perpendicular number lines, called axes, to define a	1							
coordinate system, with the intersection of the lines (the origin) arranged to	1			1	1			
coincide with the 0 on each line and a given point in the plane located by								
using an ordered pair of numbers, called its coordinates. Understand that the								
first number indicates how far to travel from the origin in the direction of one	1			1	1			•
axis, and the second number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the								
direction of one axis, and the second number indicates now far to traver in the direction of the second axis, with the convention that the names of the two	1			1	1			
axes and the coordinates correspond (e.g., x-axis and x-coordinate, y-axis	1			1	1			
and y-coordinate).	1							
5.GA2 Represent real world mathematical problems by graphing points in	1							
the first quadrant of the coordinate plane and interpret coordinate values								•
of points in the context of the situation.	1							
5.G.B Classify two-din	nensional fig	ires into cateo	nries hased	on their nr	nnerties	1	1	
5.G.B.3 Understand that attributes belonging to a category of two-		l cared	orics pasel	a on their pr	operacs.			
dimensional figures also belong to all subcategories of that category. For								
example, all rectangles have four right angles and squares are]]		•	
rectangles, so all squares have four right angles.								
5.G.B.4 Classify two-dimensional figures in a hierarchy based on	1							
properties.	1			1	1		•	
	1	l	1	1	1			